K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 1

\(\Delta'=\left(m-2\right)^2+5>0;\forall m\)

\(\Rightarrow\) Pt luôn có 2 nghiệm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-2\right)\\x_1x_2=-5\end{matrix}\right.\)

\(\left|\left|x_1\right|-\left|x_2\right|\right|=4\)

\(\Leftrightarrow\left(\left|x_1\right|-\left|x_2\right|\right)^2=16\)

\(\Leftrightarrow x_1^2+x_2^2-2\left|x_1x_2\right|=16\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-2\left|x_1x_2\right|=16\)

\(\Leftrightarrow4\left(m-2\right)^2-2.\left(-5\right)-2.\left|-5\right|=16\)

\(\Leftrightarrow\left(m-2\right)^2=4\)

\(\Rightarrow\left[{}\begin{matrix}m-2=2\\m-2=-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m=4\\m=0\end{matrix}\right.\)

a: Khi m=2 thì pt sẽ là \(x^2-8x-9=0\)

=>x=9 hoặc x=-1

b: \(\text{Δ}=\left(2m+4\right)^2-4\left(-2m-5\right)\)

\(=4m^2+16m+16+8m+20=4m^2+24m+36\)

\(=4\left(m^2+6m+9\right)=4\left(m+3\right)^2>=0\)

Để phương trình có hai nghiệm phân biệt thì m+3<>0

hay m<>-3

Theo đề, ta có: \(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=2\)

\(\Leftrightarrow\sqrt{\left(2m+4\right)^2-4\left(-2m-5\right)}=2\)

\(\Leftrightarrow\sqrt{4m^2+16m+16+8m+20}=2\)

\(\Leftrightarrow4m^2+24m+36=4\)

\(\Leftrightarrow m^2+6m+9=1\)

=>m+3=1 hoặc m+3=-1

=>m=-2 hoặc m=-4

28 tháng 1 2023

Ptr có `2` nghiệm `<=>\Delta' >= 0`

    `<=>[-(m-1)]^2-(m+1) >= 0`

    `<=>m^2-2m+1-m-1 >= 0`

     `<=>m(m-3) >= 0<=>[(m <= 0),(m >= 3):}`

`=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=2m-2),(x_1.x_2=c/a=m+1):}`

Ta có: `[x_1]/[x_2]+[x_2]/[x_1]=4`

`<=>[x_1 ^2+x_2 ^2]/[x_1.x_2]=4`

`<=>[(x_1+x_2)^2-2x_1.x_2]/[x_1.x_2]=4`

`<=>[(2m-2)^2-2(m+1)]/[m+1]=4`        `(m ne -1)`

  `=>4m^2-8m+4-2m-2=4m-4`

`<=>4m^2-14m+8=0`

`<=>m=[7+-\sqrt{17}]/4` (ko t/m)

  `=>` Ko có giá trị `m` t/m

28 tháng 1 2023

cảm ơn nh :P

 

2: \(\text{Δ}=\left(m-4\right)^2-4\left(-m+3\right)\)

\(=m^2-8m+16+4m-12\)

\(=m^2-4m+4=\left(m-2\right)^2>=0\)

Do đó: Phương trình luôn có hai nghiệm với mọi m

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}3x_1-x_2=2\\x_1+x_2=-m+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x_1=6-m\\x_2=3x_1-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{6-m}{4}\\x_2=\dfrac{3\left(6-m\right)}{4}-2=\dfrac{18-3m-8}{4}=\dfrac{10-3m}{4}\end{matrix}\right.\)

Theo đề, ta có: \(x_1x_2=-m+3\)

\(\Leftrightarrow\left(m-6\right)\left(3m-10\right)=16\left(-m+3\right)\)

\(\Leftrightarrow3m^2-30m-18m+60+16m-48=0\)

\(\Leftrightarrow3m^2-32m+12=0\)

\(\text{Δ}=\left(-32\right)^2-4\cdot3\cdot12=880>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{32-4\sqrt{55}}{6}=\dfrac{16-2\sqrt{55}}{3}\\x_2=\dfrac{16+2\sqrt{55}}{3}\end{matrix}\right.\)

a) Ta có: \(\Delta=\left(-4\right)^2-4\cdot1\cdot\left(2m-3\right)=16-4\left(2m-3\right)\)

\(\Leftrightarrow\Delta=16-8m+12=-8m+28\)

Để phương trình có hai nghiệm x1;x2 phân biệt thì \(-8m+28>0\)

\(\Leftrightarrow-8m>-28\)

hay \(m< \dfrac{7}{2}\)

Với \(m< \dfrac{7}{2}\) thì phương trình có hai nghiệm phân biệt x1;x2

nên Áp dụng hệ thức Viet, ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-4\right)}{1}=4\\x_1\cdot x_2=\dfrac{2m-3}{1}=2m-3\end{matrix}\right.\)

Để phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau thì 

\(\left\{{}\begin{matrix}m< \dfrac{7}{2}\\4+2m-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\2m+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\2m=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\m=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m=-\dfrac{1}{2}\)

Vậy: Khi \(m=-\dfrac{1}{2}\) thì phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau

28 tháng 4 2022

a) xét delta phẩy ta có:

1 + m - 2 = m -1 để phương trình có 2 nghiệm phân biệt thì delta phẩy >0 

=> m-1>0 => m > 1 

b) theo Vi-ét ta có:

\(\left\{{}\begin{matrix}x1+x2=2\\x1x2=2-m\end{matrix}\right.\)

theo bài ra ta có: x12 - x22 = 8 

<=> (x1-x2).(x1+x2)= 8 

<=>  2(x1-x2) = 8 <=> x1-x2 = 4 

<=> (x1-x2)2 = 16 <=> x12 + x22 - 2x1x2 = 16

<=> (x1+x2)2 - 4x1x2 = 16 <=> 4 - 4.(2m - 1 ) = 16 

<=> 4 - 8m + 4 = 16 <=> 8m = -8 

=> m = -1 

vậy m = -1 thỏa mãn x12 - x22 = 8 

28 tháng 4 2022

bài này m = -1 loại nha do không thỏa điều kiện 

=> không có m thỏa mãn. 

( sorry tui làm ẩu quá nên quên cái điều kiện m > 1 ) 

1: \(\text{Δ}=\left(-1\right)^2-4\cdot1\cdot\left(-m+1\right)\)

=1+4m-4

=4m-3

Để phương trình có nghiệm kép thì 4m-3=0

hay m=3/4

Thay m=3/4 vào pt, ta được: \(x^2-x+\dfrac{1}{4}=0\)

hay x=1/2

2: Để phương trình có hai nghiệm thì 4m-3>=0

hay m>=3/4

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}2x_1+x_2=5\\x_1+x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=4\\x_2=-3\end{matrix}\right.\)

Theo đề, ta có: \(x_1x_2=-m+1\)

=>1-m=-12

hay m=13

NV
24 tháng 3 2023

\(\Delta=\left(2m-1\right)^2-4\left(m^2-m\right)=1>0\) ;\(\forall m\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1x_2=m^2-m\end{matrix}\right.\)

\(\left|x_1-x_2\right|\le5\)

\(\Leftrightarrow\left(x_1-x_2\right)^2\le25\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2\le25\)

\(\Leftrightarrow\left(2m-1\right)^2-4\left(m^2-m\right)\le25\)

\(\Leftrightarrow1\le25\) (luôn đúng)

Vậy bài toán thỏa mãn với mọi m

NV
22 tháng 1

\(\Delta=\left(2m+1\right)^2-4\left(m^2+m-2\right)=9>0;\forall m\)

Phương trình luôn có 2 nghiệm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=m^2+m-2\end{matrix}\right.\)

\(x_1\left(x_1-2x_2\right)+x_2\left(x_2-2x_1\right)=9\)

\(\Leftrightarrow x_1^2+x_2^2-4x_1x_2=9\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-6x_1x_2=9\)

\(\Leftrightarrow\left(2m+1\right)^2-6\left(m^2+m-4\right)=9\)

\(\Leftrightarrow2m^2+2m-4=0\)

\(\Rightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)

3:

\(\Delta=\left(2m-1\right)^2-4\left(-2m-11\right)\)

=4m^2-4m+1+8m+44

=4m^2+4m+45

=(2m+1)^2+44>=44>0

=>Phương trình luôn có hai nghiệm pb

|x1-x2|<=4

=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}< =4\)

=>\(\sqrt{\left(2m-1\right)^2-4\left(-2m-11\right)}< =4\)

=>\(\sqrt{4m^2-4m+1+8m+44}< =4\)

=>0<=4m^2+4m+45<=16

=>4m^2+4m+29<=0

=>(2m+1)^2+28<=0(vô lý)