Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Thay \(m=2\) vào phương trình \(\left(m^2-4\right)x+2=m\) ta được:
\(\left(2^2-4\right)x+2=2\)
\(\Leftrightarrow0x+2=2\)
\(\Leftrightarrow0x=0\)
Vậy pt vô nghiệm
+) Thay \(m=-2\) vào phương trình \(\left(m^2-4\right)x+2=m\) ta được:
\(\left[\left(-2\right)^2-4\right]x+2=-2\)
\(\Leftrightarrow0x+2=-2\)
\(\Leftrightarrow0x=-4\)
Vậy pt vô nghiệm
+) Thay \(m=-2,2\) vào phương trình \(\left(m^2-4\right)x+2=m\) ta được:
\(\left[\left(-2,2\right)^2-4\right]x+2=2,2\)
\(\Leftrightarrow0,84x=-4,2\)
\(\Leftrightarrow x=-5\)
Vậy pt có nghiệm \(x=-5\)
Bạn xem lại đề hộ mình là \(\left(m2-4\right)x+2=m\) hay \(\left(m^2-4\right)x+2=m\) vậy bạn
\(a,x^2-\left(2m-3\right)x+m^2=0-vô-ngo\)
\(\Leftrightarrow\Delta< 0\Leftrightarrow[-\left(2m-3\right)]^2-4m^2< 0\Leftrightarrow m>\dfrac{3}{4}\)
\(b,\left(m-1\right)x^2-2mx+m-2=0\)
\(m-1=0\Leftrightarrow m=1\Rightarrow-2x-1=0\Leftrightarrow x=-0,5\left(ktm\right)\)
\(m-1\ne0\Leftrightarrow m\ne1\Rightarrow\Delta'< 0\Leftrightarrow\left(-m\right)^2-\left(m-2\right)\left(m-1\right)< 0\Leftrightarrow m< \dfrac{2}{3}\)
\(c,\left(2-m\right)x^2-2\left(m+1\right)x+4-m=0\)
\(2-m=0\Leftrightarrow m=2\Rightarrow-6x+2=0\Leftrightarrow x=\dfrac{1}{3}\left(ktm\right)\)
\(2-m\ne0\Leftrightarrow m\ne2\Rightarrow\Delta'< 0\Leftrightarrow[-\left(m+1\right)]^2-\left(4-m\right)\left(2-m\right)< 0\Leftrightarrow m< \dfrac{7}{8}\)
\(\dfrac{m-3}{x-4}=m^2-m-6\)
=>\(\dfrac{m-3}{x-4}-\left(m-3\right)\left(m+2\right)=0\)
=>\(\left(m-3\right)\left(\dfrac{1}{x-4}-m-2\right)=0\)
=>\(\dfrac{1}{x-4}-m-2=0\)
=>\(\dfrac{1}{x-4}=m+2\)
=>\(\left(m+2\right)\left(x-4\right)=1\)
=>\(x\left(m+2\right)-4m-8-1=0\)
=>\(x\left(m+2\right)=4m+9\)
Để phương trình có nghiệm duy nhất thì \(m+2\ne0\)
=>\(m\ne-2\)
mà \(m\ne3\)
nên \(m\notin\left\{-2;3\right\}\)
Để phương trình vô nghiệm thì m+2=0
=>m=-2
a, ĐK: \(x\le-1,x\ge3\)
\(pt\Leftrightarrow2\left(x^2-2x-3\right)+\sqrt{x^2-2x-3}-3=0\)
\(\Leftrightarrow\left(2\sqrt{x^2-2x-3}+3\right).\left(\sqrt{x^2-2x-3}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-2x-3}=-\dfrac{3}{2}\left(l\right)\\\sqrt{x^2-2x-3}=1\end{matrix}\right.\)
\(\Leftrightarrow x^2-2x-3=1\)
\(\Leftrightarrow x^2-2x-4=0\)
\(\Leftrightarrow x=1\pm\sqrt{5}\left(tm\right)\)
b, ĐK: \(-2\le x\le2\)
Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\Rightarrow t^2=10-3x-4\sqrt{4-x^2}\)
Khi đó phương trình tương đương:
\(3t-t^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2+x}-2\sqrt{2-x}=0\\\sqrt{2+x}-2\sqrt{2-x}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2+x=8-4x\\2+x=17-4x+12\sqrt{2-x}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(tm\right)\\5x-15=12\sqrt{2-x}\left(1\right)\end{matrix}\right.\)
Vì \(-2\le x\le2\Rightarrow5x-15< 0\Rightarrow\left(1\right)\) vô nghiệm
Vậy phương trình đã cho có nghiệm \(x=\dfrac{6}{5}\)
Câu 2 bạn ghi thiếu đề
Câu 1:
\(\Leftrightarrow\left(m^2-3m\right)x+2x< 2-m\)
\(\Leftrightarrow\left(m^2-3m+2\right)x< 2-m\)
BPT đã cho vô nghiệm khi và chỉ khi:
\(\left\{{}\begin{matrix}m^2-3m+2=0\\2-m\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\\m\ge2\end{matrix}\right.\) \(\Rightarrow m=2\)
Phương trình ax + b = 0 có nghiệm duy nhất khi a ≠ 0 .
Xét phương trình m 2 + 1 x + 2 = 0 có hệ số a= m2 + 1> 0 với mọi m.
Do đó, phương trình này luôn có nghiệm duy nhất với mọi giá trị của m.
Không chộ người nò cmt giúp v ?????