K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2019

16 tháng 9 2018

Điều kiện x 3, x N. Phương trình đã cho có dạng:

 

Suy ra x=12.

Chọn B.

NV
28 tháng 3 2021

3.

Đặt \(f\left(x\right)=x^4-3x^3+x-\dfrac{1}{8}\)

Hàm \(f\left(x\right)\) liên tục trên R

Do \(f\left(x\right)\) là đa thức bậc 4 nên có tối đa 4 nghiệm

Ta có: \(f\left(-1\right)=\dfrac{23}{8}>0\)

\(f\left(0\right)=-\dfrac{1}{8}< 0\Rightarrow f\left(-1\right).f\left(0\right)< 0\)

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-1;0\right)\)

\(f\left(\dfrac{1}{2}\right)=\dfrac{1}{16}>0\Rightarrow f\left(0\right).f\left(\dfrac{1}{2}\right)< 0\)

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;\dfrac{1}{2}\right)\)

\(f\left(1\right)=-\dfrac{9}{8}< 0\Rightarrow f\left(\dfrac{1}{2}\right).f\left(1\right)< 0\)

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(\dfrac{1}{2};1\right)\)

\(f\left(3\right)=\dfrac{23}{8}>0\Rightarrow f\left(1\right).f\left(3\right)< 0\)

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(1;3\right)\)

Vậy pt có 4 nghiệm thuộc các khoảng nói trên

NV
28 tháng 3 2021

4.

\(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{x^2+ax+2017}+x\right)=\lim\limits_{x\rightarrow-\infty}\dfrac{ax+2017}{\sqrt{x^2+ax+2017}-x}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{a+\dfrac{2017}{x}}{-\sqrt{1+\dfrac{a}{x}+\dfrac{2017}{x^2}}-1}=-\dfrac{a}{2}\)

\(\Rightarrow-\dfrac{a}{2}=6\Rightarrow a=-12\)

20 tháng 5 2016

\(h\left(x\right)=5\left(x+1\right)^3+4\left(x+1\right)=5\left(x^3+3x^2+3x+1\right)+4x+4=5x^3+15x^2+19x+9\\ \)

\(h'\left(x\right)=15x^2+15x+19\)

\(h"\left(x\right)=30x+15\) 

\(h"\left(x\right)=0\Leftrightarrow30x+15=0\Leftrightarrow x=\frac{-1}{2}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

Ta có: \(f'\left(x\right)=x^2-2x-3\)

\(f'\left(x\right)\le0\\ \Rightarrow x^2-2x-3\le0\\ \Leftrightarrow\left(x+1\right)\left(x-3\right)\le0\\ \Leftrightarrow-1\le x\le3\)

AH
Akai Haruma
Giáo viên
19 tháng 4 2021

Lời giải:

a) $f(x)=x^5-3x+3$ liên tục trên $R$

$f(0)=3>0; f(-2)=-23<0\Rightarrow f(0)f(-2)<0$

Do đó pt $f(x)=0$ có ít nhất 1 nghiệm thuộc $(-2;0)$

Nghĩa là pt đã cho luôn có nghiệm.

b) $f(x)=x^5+x-1$ liên tục trên $R$

$f(0)=-1<0; f(1)=1>0\Rightarrow f(0)f(1)<0$

Do đó pt $f(x)=0$ luôn có ít nhất 1 nghiệm thuộc $(0;1)$

Hay pt đã cho luôn có nghiệm.

c) $f(x)=x^4+x^3-3x^2+x+1$ liên tục trên $R$

$f(0)=1>0; f(-1)=-3<0\Rightarrow f(0)f(-1)<0$

$\Rightarrow f(x)=0$ luôn có ít nhất 1 nghiệm thuộc $(-1;0)$

Hay pt đã cho luôn có nghiệm.

6 tháng 3 2022

thôi để giải luôn 

Xét phương trình: \(x^3+ax^2+bx+c=0\left(1\right)\)

Đặt : \(f\left(x\right)=x^3+2x^2+bc+c\)

Từ giả thiết \(\left\{{}\begin{matrix}4a+c>8+2b\Rightarrow-8+4a-2b+c>0\Rightarrow f\left(-2\right)>0\\a+b+c< -1\Rightarrow1+a+b+c< 0\Rightarrow f\left(1\right)< 0\end{matrix}\right.\)

Do đó  \(f\left(-2\right).f\left(1\right)< 0\) nên pt (1) có ít nhất một nghiệm trong \(\left(-2;1\right)\)

Ta nhận thấy:

\(\overset{lim}{x\rightarrow-\infty}f\left(x\right)=-\infty\) mà \(f\left(-2\right)>0\) nên phương trình (1) có ít nhất một nghiệm  \(\alpha\in\left(-\infty;-2\right)\)

Tương tự: \(\overset{lim}{x\rightarrow+\infty}f\left(x\right)=+\infty\)  mà \(f\left(1\right)< 0\) nên phương trình (1) có ít nhất một nghiệm \(\beta\in\left(1+\infty\right)\)

Như vậy phương trình đã cho có ít nhất 3 nghiệm thực phân biệt, mặt khác phương trình bậc 3 có tối đa 3 nghiệm nên pt trên sẽ có 3 nghiệm thực phân biệt.

6 tháng 3 2022

có 3 nghiệm thực phân biệt