K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2020

\(\frac{1-21a}{x+7}=1-3a\)                                     ĐK : x \(\ne\)-7

<=> 1 - 21a = ( 1-3a ) . ( x + 7)

<=> 1-21a     = ( 1-3a ) . 7.(`1-3a ) 

<=> 1 - 21 a  = ( 1-3a).x + 7 - 21 s 

<=> ( 1-3a) .x  = -6.Để PT có no 1 - 3a \(\ne0\Leftrightarrow a\ne\frac{1}{3}\)

1 tháng 2 2020

\(ĐKXĐ:x\ne7\)

\(\frac{1-21a}{x+7}=1-3a\)

\(\Rightarrow1-21a=\left(1-3a\right)\left(x+7\right)\)

\(\Rightarrow1-21a=x-3ax+7-21a\)

\(\Rightarrow x-3ax=-6\)

\(\Rightarrow x\left(1-3a\right)=-6\)

Để x âm thì 1 - 3a dương hay \(1-3a>0\Leftrightarrow a< \frac{1}{3}\)

Vậy với mọi \(a< \frac{1}{3}\)thì phương trình có nghiệm âm.

4 tháng 5 2018

\(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)

\(\Leftrightarrow2x^2-2x+mx-m-2x^2+mx+m-2=0\)

\(\Leftrightarrow2\left(m-1\right)x=2\)

\(\Leftrightarrow x=\frac{2}{m-1}\)

Vì \(2>0\)

\(\Rightarrow m-1>0\)

\(\Rightarrow m>1\)

13 tháng 12 2021

\(ĐK:x\ne-1\)

\(\dfrac{m+1}{x+1}=m^2+3m+2=\left(m+1\right)\left(m+2\right)\\ \Leftrightarrow x+1=\dfrac{m+1}{\left(m+1\right)\left(m+2\right)}=\dfrac{1}{m+2}\\ \Leftrightarrow x=\dfrac{1}{m+2}-1=\dfrac{-m-1}{m+2}\)

Nghiệm âm \(\Leftrightarrow x< 0\Leftrightarrow\dfrac{-m-1}{m+2}< 0\Leftrightarrow\dfrac{m+1}{m+2}>0\Leftrightarrow\left[{}\begin{matrix}m>-1\\m< -2\end{matrix}\right.\)

Mà \(x\ne-1\Leftrightarrow\dfrac{m+1}{m+2}\ne1\Leftrightarrow m+1\ne m+2\left(\text{luôn đúng}\right)\)

Vậy \(m>-1;m< -2\)

25 tháng 12 2021

\(a,PT\Leftrightarrow\left(1-2m\right)x=m+4\)

Bậc nhất \(\Leftrightarrow1-2m\ne0\Leftrightarrow m\ne\dfrac{1}{2}\)

\(b,x=2\Leftrightarrow2-4m-m-4=0\Leftrightarrow m=-\dfrac{2}{5}\\ c,m=5\Leftrightarrow-9x-9=0\Leftrightarrow x=-1\)

25 tháng 12 2021

cứu mik với

=>mx+4m-5m+5=2x+2

=>x(m-2)=2+m-5=m-3

Để phương trình có nghiệm âm thì (m-3)/(m-2)<0

=>2<m<3

30 tháng 3 2019

Theo điều kiện của bài toán, nghiệm của phương trình (2) bằng một phần ba nghiệm của phương trình (1) nên nghiệm đó bằng 2.

Suy ra, phương trình (3) có nghiệm x = 2

Thay giá trị x = 2 vào phương trình này, ta được (a − 2)2 = a + 3.

Ta coi đây là phương trình mới đối với ẩn a. Giải phương trình mới này: (a − 2)2 = a + 3 ⇔ a = 7

Khi a = 7, dễ thử thấy rằng phương trình (a − 2)x = a + 3 có nghiệm x = 2, nên phương trình (2) cũng có nghiệm x = 2.

28 tháng 3 2020

\(\frac{1-21a}{x+7}=1-3a\)

\(\Leftrightarrow1-21a=\left(x+7\right)\left(1-3a\right)\)

\(\Leftrightarrow1-21a=x-3ax+7-21a\)

\(\Leftrightarrow x-3ax+6=0\)

\(\Leftrightarrow x\left(1+3a\right)=-6\)

\(\Leftrightarrow x=-\frac{6}{1+3a}\)

Để pt có nghiệm âm thì \(-\frac{6}{1+3a}< 0\Rightarrow\frac{6}{1+3a}>0\Rightarrow a>0\)

Vậy a > 0 thì pt trên có nghiệm âm

30 tháng 5 2017

a,với x=1 có : 1+a-4-4=0  => a=7

b, với a= 7 phương trình trở thành 

x3+7x2-4x-4=0 <=> \(x^3-x^2+8x^2-8x+4x-4=0\Leftrightarrow x^2\left(x-1\right)+8x\left(x-1\right)+4\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+8x+4\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\\left(x^2+8x+4\right)=0\end{cases}}\)

giải \(\left(x^2+8x+4\right)=0\)có \(\Delta'=4^2-1.4=12\Rightarrow\orbr{\begin{cases}x=-4+2\sqrt{3}\\x=-4-2\sqrt{3}\end{cases}}\)

30 tháng 5 2017
  1. a/ Thay x=1 vào pt ta có:   1^3+a.1^2-4.1-4 =7 .

b/