Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)
\(\Leftrightarrow2x^2-2x+mx-m-2x^2+mx+m-2=0\)
\(\Leftrightarrow-2x+2mx-2=0\)
\(\Leftrightarrow2\left(mx-x-1\right)=0\)
\(\Leftrightarrow mx-x-1=0\)
\(\Leftrightarrow x\left(m-1\right)=1\)
\(\Leftrightarrow x=\frac{1}{m-1}\)
\(\Rightarrow x>0\Leftrightarrow\frac{1}{m-1}>0\Leftrightarrow m-1>0\Leftrightarrow m>1\)
Vậy \(m>1\)thì \(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)có nghiệm không âm
\(\left(2x+m\right)\left(x-1\right)-2x^2+mx-2=0\)
\(\Leftrightarrow2x^2-2x+mx-m-2x^2+mx-2=0\)
\(\Leftrightarrow-2x+2mx-m-2=0\)
\(\Leftrightarrow2x\left(m-1\right)=m+2\)
\(\Leftrightarrow x=\dfrac{m+2}{2\left(m-1\right)}\)
Để phương trình có nghiệm là 1 số không âm thì:
\(\left\{{}\begin{matrix}m\ne1\\\dfrac{m+2}{2\left(m-1\right)}\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m+2\ge0\\2\left(m-1\right)\ge0\end{matrix}\right.hay\left\{{}\begin{matrix}m+2\le0\\2\left(m-1\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ge-2\\m>1\end{matrix}\right.hay\left\{{}\begin{matrix}m\le-2\\m< 1\end{matrix}\right.\)
\(\Leftrightarrow m>1\) hay \(m\le-2\).
-Vậy \(m>1\) hay \(m\le-2\) thì phương trình có nghiệm là 1 số không âm.
Sửa đề; Tìm m Để cho phương trình có nghiệm không âm
\(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)
=>\(2x^2-2x+mx-m-2x^2+mx+m-2=0\)
=>x(2m-2)-2=0
=>x(2m-2)=2
Để phương trình có nghiệm không âm thì 2m-2<0
=>m<1
Thay x = -1 vào phương trình (2x - m)(x + 1) - \(2x^2\) - mx + m - 4 = 0 ta có:
(2.(-1) - m)(-1 + 1) - \(2.\left(-1\right)^2\) - m.(-1) + m - 4=0
⇔ (-2 - m).0 - 2 + m + m - 4 = 0
⇔ 2m - 6 = 0
⇔ 2( m - 3) = 0
⇔ m - 3 = 0
⇔ m = 3
Vậy m = 3
(2x-m)(x+1)-2x2-mx+m-4=0
\(\Leftrightarrow\)2x2+2x-mx-m-2x2-mx+m-4=0
\(\Leftrightarrow\)-2mx-4=0
\(\Leftrightarrow\)-2mx=4
Thay x=-1 vào phương trình, ta có:
-2m(-1)=4
\(\Leftrightarrow\)2m=4
\(\Leftrightarrow\)m=2
Lời giải:
$2x-mx+m^2+1=0$
$\Leftrightarrow m^2+1=x(m-2)$
Để pt có nghiệm thì hoặc $m^2+1=m-2=0$ hoặc $m-2\neq 0\Leftrightarrow m\neq 2$
TH thứ nhất thì dễ loại luôn rồi nên $m\neq 2$
Khi đó: $x=\frac{m^2+1}{m-2}$
Để nghiệm không âm thì $\frac{m^2+1}{m-2}\geq 0$
$\Leftrightarrow m-2>0$
$\Leftrightarrow m>2$
Vậy......
\(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)
\(\Leftrightarrow2x^2-2x+mx-m-2x^2+mx+m-2=0\)
\(\Leftrightarrow2\left(m-1\right)x=2\)
\(\Leftrightarrow x=\frac{2}{m-1}\)
Vì \(2>0\)
\(\Rightarrow m-1>0\)
\(\Rightarrow m>1\)