Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=\dfrac{3}{n+2}\left(\forall n\in Z\right)\)
a) Để \(A\) là phân số thì \(n+2\ne0\Leftrightarrow n\ne-2\)
Vậy \(n\ne-2\) thì \(A\) là phân số.
b) Thay \(n=0;n=2;n=-7\) lần lượt vào \(A\) ta có:
\(\left\{{}\begin{matrix}A=\dfrac{3}{0+2}=\dfrac{3}{2}\\A=\dfrac{3}{2+2}=\dfrac{3}{4}\\A=\dfrac{3}{-7+2}=\dfrac{-3}{5}\end{matrix}\right.\)
c) Để \(A\in Z\Rightarrow\left(n+2\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{-1;-3;1;-5\right\}\)
Vậy \(n\in\left\{-1;-3;1;-5\right\}\) thì \(A\in Z\)
a: Để Q là phân số thì n+2<>0
hay n<>-2
b: Thay n=1 vào Q, ta được:
Q=-2/(1+2)=-2/3
Thay n=5 vào Q, ta được:
Q=-2/(5+2)=-2/7
Thay n=-5 vào Q, ta được:
Q=-2/(-5+2)=-2/-3=2/3
a,Vì \(-2,n+2\in Z\Rightarrow Q\) là phân số nếu \(n+2\ne0\left(v\text{ì}0-2=-2\right)\)
b, ta có :
\(n=1\Rightarrow Q=\dfrac{-2}{1+2}=\dfrac{-2}{3}\\ n=5\Rightarrow Q=\dfrac{-2}{5+2}=\dfrac{-2}{7}\\ n=-5\Rightarrow Q=\dfrac{-2}{-5+2}=\dfrac{-2}{-3}\)
vậy ....
\(a.\)
\(n-3\ne0\)
\(\Leftrightarrow n\ne3\)
\(b.\)
\(B\left(0\right)=\dfrac{-4}{3}\)
\(B\left(10\right)=\dfrac{4}{10-3}=\dfrac{4}{7}\)
\(B\left(-2\right)=\dfrac{4}{-2-3}=-\dfrac{4}{5}\)
Giải thích các bước giải:
a) Để B là phân số thì số nguyên n phải khác 0 và không thuộc Ư(4)
b)Nếu n=1 thì B=4/1-3=-2
Nếu n=2 thì B=4/2-3=-4
Nếu n=-3 thì B=4/-3-3=-2/3
a) n phải khác 3
b)nếu n=0thi B=4 phần âm 3
tự làm phần còn lại nha
a) Để B là phân số thì n-3 \(\ne\) 0 \(\Rightarrow n\ne3\)
Vậy để B là phân số thì n \(\ne\) 3
b) Với n=0 thì: B=\(\dfrac{4}{0-3}=\dfrac{4}{-3}\)
Với n=10 thì: B=\(\dfrac{4}{10-3}=\dfrac{4}{7}\)
Với n=-2 thì: B=\(\dfrac{4}{-2-3}=\dfrac{4}{-5}\)
a) Điều kiện: n-3 khác 0 => n khác 3
b) với n =0 => B = 4/0-3 = 4/-3
Với n =10 => B = 4/10-3 = 4/7
Với n =-2 => B = 4/-2-3 = 4/-5
a, $n=0⇒B=\dfrac{6}{0+2}=3$
$n=2⇒B=\dfrac{6}{2+2}=\dfrac{3}{2}$
$n=-5⇒B=\dfrac{6}{-5+2}=\dfrac{6}{-3}=-2$
b, $B$ là phân số $⇔B$ có nghĩa
$⇔n$ thỏa mãn ĐKXĐ:$n+2 \neq 0$ hay $n \neq -2$
$n∈Z$
Vậy $n \neq -2;n∈Z$ thì $B$ là phân số