K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
QM
1
AH
Akai Haruma
Giáo viên
3 tháng 5 2023
Lời giải:
$B=\frac{3-4n}{2n+1}=\frac{5-2(2n+1)}{2n+1}=\frac{5}{2n+1}-2$
Để $B$ lớn nhất thì $\frac{5}{2n+1}$ lớn nhất
Điều này xảy ra khi $2n+1$ là số dương nhỏ nhất.
Với $n\in\mathbb{Z}$, $2n+1$ đạt giá trị dương nhỏ nhất bằng $1$
$\Rightarrow B_{\max}=\frac{5}{1}-2=3$
QM
1
QM
1
R
0
24 tháng 3 2020
A=\(\frac{\frac{1}{6}-\frac{1}{39}+\frac{1}{51}}{\frac{1}{8}-\frac{1}{52}+\frac{1}{68}}\)
Ta có:\(\frac{10}{5n-3}=\frac{2.\left(5n-3\right)+6}{5n-3}=2+\frac{6}{n-3}\)
Suy ra:6 chia hết cho n-3
Hoặc n-3\(\in\)Ư(6)
Vậy Ư(6) là:(1,2,3,6)
Do đó ta có bảng sau:
Vậy n=1
Giải:
Để B thuộc Z thì 10n chia hết cho 5n - 3
\(10n⋮5n-3\)
\(\Rightarrow\left(10n-6\right)+6⋮5n-3\)
\(\Rightarrow2\left(5n-3\right)+6⋮5n-3\)
\(\Rightarrow6⋮5n-3\)
\(\Rightarrow5n-3\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
+) \(5n-3=1\Rightarrow n=\frac{4}{5}\) ( loại )
+) \(5n-3=-1\Rightarrow n=\frac{2}{5}\) ( loại )
+) \(5n-3=2\Rightarrow n=1\) ( chọn )
+) \(5n-3=-2\Rightarrow n=\frac{1}{5}\) ( loại )
+) \(5n-3=3\Rightarrow n=\frac{6}{5}\) ( loại )
+) \(5n-3=-3\Rightarrow n=0\) ( chọn )
+) \(5n-3=6\Rightarrow n=\frac{9}{5}\) ( loại )
+) \(5n-3=-6\Rightarrow n=\frac{-3}{5}\) ( loại )
Vì 0 < 1 nên n = 1 để B có giá trị lớn nhất
Vậy n = 1