K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2017

\(A=\dfrac{n+1}{n-3}=\dfrac{n-3+4}{n-3}=\dfrac{n-3}{n-3}+\dfrac{4}{n-3}=1+\dfrac{4}{n-3}\)

Để A là p/s tối giản thì \(\dfrac{4}{n-3}\) phải là p/s tối giản

\(=>n-3\) là số lẻ \(\Leftrightarrow n\) là số chẵn

Vậy \(n=2k\left(k\in Z\right)\)

7 tháng 2 2017

ta có 

n+1/n-3

= (n-3)+4/n-3

= 1 + 4/n-3

để A là p/số tối giản thì 

+) Ư CLN(4;n-3)=1

=> n= 2K + 1 ( K thuộc Z)

+) 4 chia hết n-3

=> n-3 thuộc Ư(4) 

=> n-3=1;4;2;-1;-2;-4

=> n=4;7;5;2;1;-1

có chi ko hiểu thì hỏi mik nha nhớ đó

7 tháng 2 2017

32/42

14 tháng 3 2021

Đề bài có phải như thế này không:

Cho phân số \(A=\frac{n+1}{n-3}\)( với n thuộc Z và n khác 3 ). Tìm n để A là phân số tối giản.

Bài làm

\(A=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=1+\frac{4}{n-3}\)

A là phân số tối giản \(\Leftrightarrow\frac{4}{n-3}\)là phân số tối giản

\(\Leftrightarrow n-3\)là số lẻ

\(\Leftrightarrow n\)là số chẵn

 \(\Rightarrow n=2k\left(k\in Z\right)\)

14 tháng 3 2021

Mình làm theo đề bạn trên nhé !

\(A=\frac{n+1}{n-3}\) 

Gọi d là (n+1;n-3)

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\n-3⋮d\end{cases}}\) 

\(\Rightarrow n+1-\left(n-3\right)⋮d\) 

\(\Rightarrow4⋮d\) 

\(\Rightarrow d=1;d=2;d=4\) 

 ( vì 4 chia hết cho 2 nên ta chỉ làm 1 trường hợp ) TH1 :Nếu d=2 

 \(\Rightarrow n+1⋮2\)

\(\Rightarrow n+1=2k\) 

\(\Rightarrow\) n= 2k-1

khi đó :

n-3 = 2k-1-3=2k-4 \(⋮\) 2

=> phân số đó rút gọn được cho 2 

Vậy để phân số trên  tối giản thì \(n\ne2k-1\)

14 tháng 3 2021

Có \(A=\frac{n+1}{n-3}=\frac{n-3}{n-3}+\frac{4}{n-3}=1+\frac{4}{n-3}\)

Để A là phân số tối giản thì UCLN (4,n-3) = 1

                                      => n -3 là số lẻ

                                      => n lẻ 

                                      => n có dạng 2k+1 (k thuôc Z) và k khác 1 (để n khác 3)

Vậy...

                                     

21 tháng 3 2020

Để A là phân số tối giản thì UCLN(2n+7, 5n+2)=1

Đặt UCLN(2n+7, 5n+2)=d

=>2n+7\(⋮d\)=>5(2n+7)=>10n+35 \(⋮d\)

5n+2\(⋮d\)=>2(5n+2)=>10n+4 \(⋮d\)

Vì 10n+35 \(⋮d\), 10n+4\(⋮d\)=>(10n+35)-(10n+4)

=(10n-10n)+(35-4)=35-4=31 \(⋮d\)=>\(d\in\left\{1;31\right\}\)

Để 2n+7/5n+2 là phân số tối giản thì UCLN(2n+7, 5n+2)=1

Để 2n+7 và 5n+2 không cùng chia hết cho 31 thì n\(\ne12,43,74,105,...\)(mỗi số có khoảng cách với nhau là 31 đơn vị)

Vậy để A là phân số tối giản thì \(n\inℕ,n\ne12,43,74,105,136,...\)

4 tháng 3 2018

ta có:

\(A=\frac{2n+7}{n+2}=\frac{2.\left(n+2\right)+3}{n+2}\)

\(=\frac{2.\left(n+2\right)}{n+2}+\frac{3}{n+2}\)

\(=2+\frac{3}{n+2}\)

Để A là phân số tối giản thì \(2+\frac{3}{n+2}\)tối giản.

=> \(\frac{3}{n+2}\)tối giản

vậy \(3⋮n+2\)

Vậy \(n+2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

hay \(n\in\left\{-1;-3;1;-5\right\}\)

ĐÚNG 100%