Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{n+1}{n-3}=\dfrac{n-3+4}{n-3}=\dfrac{n-3}{n-3}+\dfrac{4}{n-3}=1+\dfrac{4}{n-3}\)
Để A là p/s tối giản thì \(\dfrac{4}{n-3}\) phải là p/s tối giản
\(=>n-3\) là số lẻ \(\Leftrightarrow n\) là số chẵn
Vậy \(n=2k\left(k\in Z\right)\)
1. Để A tối giản thì:
(n + 1, n + 3) = 1
Gọi d là ƯC nguyên tố của n + 1 và n + 3
=> n + 3 - n - 1 chia hết cho d
=> 2 chia hết cho d
Mà d nguyên tố
=> d = 2
Tìm n để n + 1 chia hết cho d; n + 3 chia hết cho 2
Vì n + 3 = n + 1 + 2 nên n + 3 chia hết cho 2 thì n + 1 chia hết cho 2
=> n + 3 = 2k (k thuộc Z)
=> n = 2k - 3
Vậy n khác 2k - 3 thì A tối giản.
2. 12n + 1 / 30n + 2 tối giản
=> (12n + 1, 30n + 2) = 1
Gọi ƯCLN (12n + 1, 30n + 2) = d
=> 12n + 1 chia hết cho d => 5.(12n + 1) = 60n + 5 chia hết cho d
=> 30n + 2 chia hết cho d => 2.(30n + 2) = 60n + 4 chia hết cho d
=> 60n + 5 - 60n - 4 chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy p/số trên tối giản.
ta có
n+1/n-3
= (n-3)+4/n-3
= 1 + 4/n-3
để A là p/số tối giản thì
+) Ư CLN(4;n-3)=1
=> n= 2K + 1 ( K thuộc Z)
+) 4 chia hết n-3
=> n-3 thuộc Ư(4)
=> n-3=1;4;2;-1;-2;-4
=> n=4;7;5;2;1;-1
có chi ko hiểu thì hỏi mik nha nhớ đó
32/42