Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
ta có:
\(A=\frac{2n+7}{n+2}=\frac{2.\left(n+2\right)+3}{n+2}\)
\(=\frac{2.\left(n+2\right)}{n+2}+\frac{3}{n+2}\)
\(=2+\frac{3}{n+2}\)
Để A là phân số tối giản thì \(2+\frac{3}{n+2}\)tối giản.
=> \(\frac{3}{n+2}\)tối giản
vậy \(3⋮n+2\)
Vậy \(n+2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
hay \(n\in\left\{-1;-3;1;-5\right\}\)
ĐÚNG 100%
a) \(\frac{2n+3}{4n+1}\) là phân số tối giản
\(\frac{2n+3}{4n+1}\)= \(\frac{2+3}{4+1}\) =\(\frac{5}{5}\)=1
=>n=1
mình ko chắc là đúng nha
b: Để A là số nguyên thì 5n-9 chia hết cho 2n+4
=>10n-18 chia hét cho 2n+4
=>10n+20-38 chia hết cho 2n+4
=>\(2n+4\in\left\{1;-1;2;-2;19;-19;38;-38\right\}\)
=>\(n\in\left\{-\dfrac{3}{2};-\dfrac{5}{2};-1;-3;\dfrac{15}{2};-\dfrac{23}{2};17;-21\right\}\)
Vì n là số nguyên nên 2n + 7 và 5n + 2 là số nguyên.
Gọi \(d\inƯC\left(2n+7,5n+2\right)\)
\(\Rightarrow2n+7⋮d\)và \(5n+2⋮d\)
\(\Rightarrow5\left(2n+7\right)-2\left(5n+2\right)⋮d\Rightarrow10n+35-10n-4⋮d\)
\(\Rightarrow31⋮d\Rightarrow d\in\left\{1;-1;31;-31\right\}\)
Ta có \(2n+7⋮31\Leftrightarrow2n+7+31⋮31\Leftrightarrow2n+38⋮31\Leftrightarrow2\left(n+19\right)⋮31\)
Vì \(\left(2,31\right)=1\Rightarrow n+19⋮31\Leftrightarrow n+19=31k\Leftrightarrow n=31k-19\)
+) Nếu \(n=31k-19\)
\(\Rightarrow2n+7=2\left(31k-19\right)+7=62k-38+7=62k-31\)
\(=31\left(2k-1\right)⋮31\)mà \(2n+7>2\Rightarrow2n+7\)là hợp số ( loại )
+) Nếu \(n\ne31k-19\)thì \(2n+7\)ko chia hết cho 31.
\(\RightarrowƯC\left(2n+7,5n+2\right)=\left\{1;-1\right\}\)
\(\Rightarrow\frac{2n+7}{5n+2}\)là PSTG .
Vậy n\\(n\ne31k-19\)thì \(\frac{2n+7}{5n+2}\)là PSTG \(\forall\)số nguyên n.
bạn giải ra được không , tớ cần lời giải chứ đáp án thì tớ biết
ta có
\(\frac{2n+7}{5n+2}=\frac{2n+2+5}{2n+2+3n}=2+\frac{5}{5n+2}\)
để \(\frac{5}{5n+2}\)là số nguyên thì 5\(⋮\)(5n+2) và n thuộc N
=> 5n+2 \(\in\)Ư(5)={-1;-5;1;5}
* 5n+2=(-1) => n=(-0,6) loại
* 5n+2=(-5) => n=(-0,4) loại
* 5n+2=1 => n=(-0,2) loại
* 5n+2=5 => n=0,6 loại
vậy không có giá trị n nào thỏa mãn
Để A là phân số tối giản thì UCLN(2n+7, 5n+2)=1
Đặt UCLN(2n+7, 5n+2)=d
=>2n+7\(⋮d\)=>5(2n+7)=>10n+35 \(⋮d\)
5n+2\(⋮d\)=>2(5n+2)=>10n+4 \(⋮d\)
Vì 10n+35 \(⋮d\), 10n+4\(⋮d\)=>(10n+35)-(10n+4)
=(10n-10n)+(35-4)=35-4=31 \(⋮d\)=>\(d\in\left\{1;31\right\}\)
Để 2n+7/5n+2 là phân số tối giản thì UCLN(2n+7, 5n+2)=1
Để 2n+7 và 5n+2 không cùng chia hết cho 31 thì n\(\ne12,43,74,105,...\)(mỗi số có khoảng cách với nhau là 31 đơn vị)
Vậy để A là phân số tối giản thì \(n\inℕ,n\ne12,43,74,105,136,...\)