Cho phân số A= 2n+7/5n+2 (n thuộc N).Tìm n để...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2020

Để A là phân số tối giản thì UCLN(2n+7, 5n+2)=1

Đặt UCLN(2n+7, 5n+2)=d

=>2n+7\(⋮d\)=>5(2n+7)=>10n+35 \(⋮d\)

5n+2\(⋮d\)=>2(5n+2)=>10n+4 \(⋮d\)

Vì 10n+35 \(⋮d\), 10n+4\(⋮d\)=>(10n+35)-(10n+4)

=(10n-10n)+(35-4)=35-4=31 \(⋮d\)=>\(d\in\left\{1;31\right\}\)

Để 2n+7/5n+2 là phân số tối giản thì UCLN(2n+7, 5n+2)=1

Để 2n+7 và 5n+2 không cùng chia hết cho 31 thì n\(\ne12,43,74,105,...\)(mỗi số có khoảng cách với nhau là 31 đơn vị)

Vậy để A là phân số tối giản thì \(n\inℕ,n\ne12,43,74,105,136,...\)

14 tháng 4 2020

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

14 tháng 4 2020

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

4 tháng 3 2018

ta có:

\(A=\frac{2n+7}{n+2}=\frac{2.\left(n+2\right)+3}{n+2}\)

\(=\frac{2.\left(n+2\right)}{n+2}+\frac{3}{n+2}\)

\(=2+\frac{3}{n+2}\)

Để A là phân số tối giản thì \(2+\frac{3}{n+2}\)tối giản.

=> \(\frac{3}{n+2}\)tối giản

vậy \(3⋮n+2\)

Vậy \(n+2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

hay \(n\in\left\{-1;-3;1;-5\right\}\)

ĐÚNG 100%

7 tháng 2 2017

33/12

7 tháng 2 2017

sao bạn đòi hỏi vậy

10 tháng 8 2017

a, (5n+2)9 = (2n+7)7

  45n+18=14n+49

  31n=31

  n=1

28 tháng 3 2018

a) Để \(A=\frac{7}{9}\Leftrightarrow\frac{5n+2}{2n+7}=\frac{7}{9}\)

\(\Leftrightarrow9\left(5n+2\right)=7\left(2n+7\right)\)

\(\Leftrightarrow45n+18=14n+49\)

\(\Leftrightarrow31n=31\)

\(\Leftrightarrow n=1\)

n) Để A nguyên thì \(\frac{5n+2}{2n+7}\in Z\)

Nếu A nguyên thì 2A cũng nguyên. Vậy ta tìm n nguyên để 2A nguyên sau đó thử lại để chọn các giá trị đúng của n.

\(2A=\frac{10n+4}{2n+7}=\frac{5\left(2n+7\right)-31}{2n+7}=5-\frac{31}{2n+7}\)

Để 2A nguyên thì \(2n+7\inƯ\left(31\right)=\left\{\pm1;\pm31\right\}\)

Ta có bảng:

2n + 71-131-31
n-3-412-19
KLTMTMTMTM

 

Vậy ta có \(n\in\left\{-1;-4;12;-19\right\}\)

c

a) \(\frac{2n+3}{4n+1}\) là phân số tối giản

\(\frac{2n+3}{4n+1}\)\(\frac{2+3}{4+1}\) =\(\frac{5}{5}\)=1

=>n=1

mình ko chắc là đúng nha