\(\frac{n-5}{n+1}\)

a) Tìm n để A là số nguyên?

b) Tìm n để A...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2016

a) n - 5 / n + 1

=> n + 1 - 6 / n + 1

=> 6 / n + 1

=> n + 1 thuộc Ư(6) = {1;2;3;6;-1;-2;-3;-6}

b) A tối giản => bỏ số âm

A cô thể thuộc {1;2;3;6}

Vì 1 - 5 là số âm => bỏ 1

Vì 2 - 5 âm => bỏ 2

Vì 3 - 5 âm => bỏ 5

Vậy để A tối giản => n = 6

2 tháng 8 2016

tớ quên mất điều kiện là: (n thuộc Z và n khác -1)

6 tháng 7 2016

\(A=\frac{n-5}{n+1}\in Z\)

\(\Rightarrow n-5⋮n+1\)

\(\Rightarrow n+1-6⋮n+1\)

\(\Rightarrow6⋮n-1\)

\(\Rightarrow n-1\inƯ\left(6\right)\)

\(\Rightarrow n-1\in\left\{-6;-3;-2;-1;1;2;3;6\right\}\)

\(\Rightarrow n\in\left\{-5;-2;-1;0;2;3;4;7\right\}\)

6 tháng 7 2016

Theo mình là :

\(\frac{n-5}{n+1}=\frac{n-6+1}{n+1}=\frac{-6}{n+1}\)

=> n + 1 \(\in\) Ư (-6) = {1;-1;2;-2;3;-3;6;-6}

=> n = { 0;-2;1;-3;2;-4;5;-7}

Mà n \(\ne\) 1 => n \(\in\) {0;-2;-3;2;-4;5;-7}

a. Để A là số nguyên=> n = {0;-3;2;-4;5;-7}

b Để A là tổi giản => n = -2

10 tháng 8 2016

Để A là phân số tối giản thì n + 1 phải không chia hết cho n - 3

Mà n + 1 = n - 3 + 4

vì n - 3 chia hết cho n-3 rồi nên 4 phải không chia hết cho n -  3

\(\Rightarrow n-3\in\left\{3\right\}\)

=> n = 6

10 tháng 8 2016

\(n-3\in\left\{3\right\}\)là sao

21 tháng 6 2019

Bài 1:

a) \(x=\frac{a+1}{a+9}=\frac{a+9-8}{a+9}=\frac{a+9}{a+9}-\frac{8}{a+9}=1-\frac{8}{a+9}\)

Để \(x\in Z\)thì \(a+9\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)

Vậy \(a\in\left\{-17;-13;-11;-10;-8;-7;-5;-1\right\}\)

b) \(x=\frac{a-1}{a+4}=\frac{a+4-5}{a+4}=\frac{a+4}{a+4}-\frac{5}{a+4}=1-\frac{5}{a+4}\)

Để \(x\in Z\)thì \(a+4\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

Vậy \(a\in\left\{-9;-5;-3;1\right\}\)

Bài 2:

a) \(t=\frac{3x-8}{x-5}=\frac{3x-15}{x-5}+\frac{7}{x-5}=\frac{3\left(x-5\right)}{x-5}+\frac{7}{x-5}=3+\frac{7}{x-5}\)

Để \(t\in Z\)thì \(x-5\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Vậy \(x\in\left\{-2;4;6;12\right\}\)

b)\(q=\frac{2x+1}{x-3}=\frac{2x-6}{x-3}+\frac{7}{x-3}=\frac{2\left(x-3\right)}{x-3}+\frac{7}{\left(x-3\right)}=2+\frac{7}{x-3}\)

Để \(q\in Z\)thì \(x-3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Vậy \(x\in\left\{-4;2;4;10\right\}\)

c)\(p=\frac{3x-2}{x+3}=\frac{3x+9}{x+3}-\frac{11}{x+3}=\frac{3\left(x+3\right)}{x+3}-\frac{11}{x+3}=3-\frac{11}{x+3}\)

Để \(p\in Z\)thì \(x+3\inƯ\left(11\right)=\left\{-11;-1;1;11\right\}\)

Vậy \(x\in\left\{-14;-4;-2;8\right\}\)

Bài 3:

Gọi \(d\inƯC\left(2m+9;14m+62\right)\)

\(\Rightarrow\hept{\begin{cases}\left(2m+9\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}7\left(2m+9\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\left(14m+63\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)

\(\Rightarrow\left[\left(14m+63\right)-\left(14m+62\right)\right]⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯC\left(2m+9;14m+62\right)=1\)

Vậy \(x=\frac{2m+9}{14m+62}\)là p/s tối giản

8 tháng 8 2020

Bg

a) Ta có: A = \(\frac{4n+1}{3n+1}\)    (n thuộc Z)

Để A thuộc Z thì 4n + 1 \(⋮\)3n + 1

=> 4.(3n + 1) - 3.(4n + 1) \(⋮\)3n + 1

=> 12n + 4 - (12n + 3) \(⋮\)3n + 1

=> 12n + 4 - 12n - 3 \(⋮\)3n + 1

=> (12n - 12n) + (4 - 3) \(⋮\)3n + 1

=> 1 \(⋮\)3n + 1

=> 3n + 1 thuộc Ư(1)

Ư(1) = {1; -1}

=> 3n + 1 = 1 hay -1

=> 3n = 1 - 1 hay -1 - 1

=> 3n = 0 hay -2

=> n = 0 ÷ 3 hay -2 ÷ 3

=> n = 0 hay -2/3

Mà n thuộc Z

=> n = 0

Vậy n = 0 thì A nguyên

21 tháng 8 2015

Để D nguyên thì

8n-5 chia hết cho 3n+2

=> 24n-15 chia hết cho 3n+2

=> 24n+16-31 chia hết cho 3n+2

Vì 24n+16 chia hết cho 3n+2

=> -31 chia hết cho 3n+2

=> 3n+2 thuộc Ư(31)

3n+2n
1-1/3
-1-1
3129/3
-31-11

Mà n nguyên

=> n \(\in\){-1; -11}


Gọi ƯCLN(8n-5; 3n+2) là d. Ta có:

8n-5 chia hết cho d => 24n-15 chia hết cho d

3n+2 chia hết cho d => 24n+16 chia hết cho d

=> 24n+16-(24n-15) chia hết cho d

=> 31 chia hết cho d

Giả dử phân số rút gọn được

=> 3n+2 chia hết cho 31

=> 3n+2+31 chia hết cho 31

=> 3n+33 chia hết cho 31

=> 3(n+11) chia hết cho 31

=> n+11 chia hết cho 31

=> n = 31k-11

KL: Để D tối giản thì n \(\ne\)31k-11

31 tháng 8 2021

A=5-2n/6n+1 nha mn

18 tháng 7 2017

\(A=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=\frac{n-3}{n-3}+\frac{4}{n-3}=1+\frac{4}{n-3}\)

=> n-3 thuộc Ư(4) = {-1,-4,1,4}

Ta có bảng :

n-3-1-414
n2-147

Vậy n = {-1,2,4,7}

20 tháng 7 2017

Thiếu rồi bạn còn -2 và 2 nữa mà

30 tháng 3 2017

bài này mk học rồi