Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: P+Q=(5xyz+2xy-3x^2-11)+(15-5x^2+xyz-xy)
=5xyz+2xy -3x^2-11+15-5x^2+xyz-xy
=6xyz+xy-8x^2+4
P-Q=(5xyz+2xy-3x^2-11)-(15-5x^2+xyz-xy)
=5xyz+2xy -3x^2-11-15+5x^2-xyz-xy
=4xyz+xy+2x^2-26
Mình lm bài 1 thôi cn bài 2 thì mình ko có thời gian,nếu sai thì thôi nha
P+Q=(5xyz+2zy-3x2-11)+(15-5x2+xyz-xy)
P+Q=5xyz+2zy-3x2-11+15-5x2+xyz-xy
P+Q=(5xyz+xyz)+2zy+(-3x2-5x2)+(-11+15)-xy
P+Q=6xyz+2zy-8x2+4-xy
P-Q=(5xyz+2zy-3x2-11)-(15-5x2+xyz-xy)
P-Q=5xyz+2zy-3x2-11-15+5x2-xyz+xy
P-Q=(5xyz-xyz)+2zy+(-3x2+5x2)+(-11-15)+xy
P-Q=4xyz+2zy+2x2-26+xy
P + Q= 5xyz + 2zy - 3x2 - 11 + 15 - 5x2 + xyz - xy
P + Q=(5xyz + xyz) + (-3x2 - 5x2) + 2zy + (-11 + 15) - xy
P+Q= 6xyz - 8x2+2zy+4-xy
P - Q=(5xyz + 2zy-3x2 - 11) - (15 - 5x2+xyz-xy)
P-Q=5xyz+2zy - 3x2 - 11 - 15 + 5x2 - xyz+ xy
P-Q = (5xyz - xyz) + (-3x2 + 5x2)+ 2zy + (-11 -15)+ xy
P-Q = 4xyz + 2x2 + 2zy - 26 +xy
Q – (5x2 – xyz) = xy + 2x2 – 3xyz + 5
⇒ Q = (xy + 2x2 – 3xyz + 5) + (5x2 – xyz)
= xy + 2x2 – 3xyz + 5 + 5x2 – xyz
= (2x2+ 5x2) + (- 3xyz – xyz) + xy + 5
= 7x2 – 4xyz + xy + 5.
P - Q + R =(2x2 - 3xy + 4y2) - (3x2 + 4xy -y2) + (x2 +2xy +3y2)
= 2x2 - 3xy + 4y2 - 3x2 - 4xy + y2 + x2 + 2xy + 3y2
=(2x2 - 3x2 + x2) + ( -3xy - 4xy +2xy) + (4y2 + y2 +3y2)
= -5xy + 8y2
Vậy P - Q + R = - 5xy + 8y2
Bài 5:
\(P-Q+R=\) \(\left(2x^2-3xy+4y^2\right)-\left(3x^2+4xy-y^2\right)+\left(x^2+xy+3y^2\right)\)
\(P-Q+R=\) \(2x^2-3xy+4y^2-3x^2-4xy+y^2+x^2+xy+3y^2\)
\(P-Q-R=\) \(\left(2x^2-3x^2+x^2\right)+\left(-3xy-4xy+2xy\right)+\left(4y^2+y^2+2y^2\right)\)
\(P-Q-R=\) \(0-5xy+7y^2\)
Vậy \(P-Q-R=\) \(-5xy+7y^2\)
2,
M + N = 3xyz - 3x2 + 5xy - 1 + 5x2 + xyz - 5xy + 3 - y
= -3x2 + 5x2 + 3xyz + xyz + 5xy - 5xy - y - 1 + 3
= 2x2 + 4xyz - y +2.
M - N = (3xyz - 3x2 + 5xy - 1) - (5x2 + xyz - 5xy + 3 - y)
= 3xyz - 3x2 + 5xy - 1 - 5x2 - xyz + 5xy - 3 + y
= -3x2 - 5x2 + 3xyz - xyz + 5xy + 5xy + y - 1 - 3
= -8x2 + 2xyz + 10xy + y - 4.
N - M = (5x2 + xyz - 5xy + 3 - y) - (3xyz - 3x2 + 5xy - 1)
= 5x2 + xyz - 5xy + 3 - y - 3xyz + 3x2 - 5xy + 1
= 5x2 + 3x2 + xyz - 3xyz - 5xy - 5xy - y + 3 + 1
= 8x2 - 2xyz - 10xy - y + 4.
3,
a) P + (x2 – 2y2) = x2 – y2 + 3y2 – 1
P = (x2 – y2 + 3y2 – 1) - (x2 – 2y2)
P = x2 – y2 + 3y2 – 1 - x2 + 2y2
P = x2 – x2 – y2 + 3y2 + 2y2 – 1
P = 4y2 – 1.
Vậy P = 4y2 – 1.
b) Q – (5x2 – xyz) = xy + 2x2 – 3xyz + 5
Q = (xy + 2x2 – 3xyz + 5) + (5x2 – xyz)
Q = xy + 2x2 – 3xyz + 5 + 5x2 – xyz
Q = 7x2 – 4xyz + xy + 5
Vậy Q = 7x2 – 4xyz + xy + 5.
4,
a, Thu gọn : x2+2xy-3x3+2y3+3x3-y3
= x2+2xy+(-3x3+3x3)+2y3-y3
=x2+2xy+2y3-y3
Thay x=5,y=4 vào đa thức x2+2xy+2y3-y3 Ta có:
52 + 2.5.4 + 43 = 25 + 40 + 64 = 129.
Vậy giá trị của đa thức x2+2xy+2y3-y3 tại x=5,y=4 là 129
b,
Thay x = -1; y = -1 vào biểu thức xy-x2y2+x4y4-x6y6+x8y8 Ta Có
M = (-1)(-1) - (-1)2.(-1)2 + (-1)4. (-1)4-(-1)6.(-1)6 + (-1)8.(-1)8
= 1 -1 + 1 - 1+ 1 = 1.
Vậy giá trị của biểu thức xy-x2y2+x4y4-x6y6+x8y8 tại x=-1, y=-1 là 1
5,
a, C=A+B
C = x2 – 2y + xy + 1 + x2 + y - x2y2 - 1
C = 2x2 – y + xy - x2y2
b) C + A = B => C = B - A
C = (x2 + y - x2y2 - 1) - (x2 – 2y + xy + 1)
C = x2 + y - x2y2 - 1 - x2 + 2y - xy - 1
C = - x2y2 - xy + 3y - 2.
Thu gọn Q(x) = x4 + 7x2 + 1
Khi đó R(x) = Q(x) - P(x) = 4x2 + 3x + 2. Chọn A
a: P(x)=6x^3-4x^2+4x-2
Q(x)=-5x^3-10x^2+6x+11
M(x)=x^3-14x^2+10x+9
b: \(C\left(x\right)=7x^4-4x^3-6x+9+3x^4-7x^3-5x^2-9x+12\)
=10x^4-11x^3-5x^2-15x+21
P + Q = 5xyz + 2xy - 3x2 + 11 + xyz - 5x2 - xy + 15
= -3x2 - 5x2 + 5xyz + xyz + 2xy - xy + 11 + 15
= -8x2 + 6xyz + xy + 26
P - Q = 5xyz + 2xy - 3x2 + 11 - xyz + 5x2 + xy - 15
= -3x2 + 5x2 + 5xyz - xyz + 2xy + xy + 11 - 15
= 2x2 + 4xyz + 3xy - 4