Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo:Câu hỏi của Nam Võ - Toán lớp 9 | Học trực tuyến
a) Phương trình hoành độ giao điểm của (P) và (d) là:
\(\dfrac{x^2}{2}=mx-m+2\)
\(\Leftrightarrow\dfrac{1}{2}x^2-mx+m-2=0\)
\(\Delta=\left(-m\right)^2-4\cdot\dfrac{1}{2}\cdot\left(m-2\right)=m^2-2m+4>0\forall m\)
Do đó: (P) và (d) luôn cắt nhau tại hai điểm phân biệt(Đpcm)
b)Xét pt hoành độ giao điểm của (P) và (d) có:
\(\dfrac{1}{2}x^2=mx-m+1\)
\(\Leftrightarrow x^2-2mx+2m-2=0\)
Có \(\Delta=4m^2-4\left(2m-2\right)=4\left(m^2-2m+1\right)+4=4\left(m-1\right)^2+4>0\forall m\)
=> (d) luôn cắt (P) tại hai điểm phân biệt
Theo định lí viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-2\end{matrix}\right.\)
Vì \(A;B\in\left(P\right)\Rightarrow\left\{{}\begin{matrix}y_1=\dfrac{1}{2}x_1^2\\y_2=\dfrac{1}{2}x_2^2\end{matrix}\right.\)
\(\Rightarrow y_1+y_2=\dfrac{1}{2}x_1^2+\dfrac{1}{2}x_2^2=\dfrac{1}{2}\left(x_1+x_2\right)^2-x_1x_2\)\(=\dfrac{1}{2}.\left(2m\right)^2-\left(2m-2\right)=2m^2-2m+2\)
Vậy...
Phương trình hoành độ giao điểm của (P) và (d) là:
\(x^2=mx+3\)
\(\Leftrightarrow x^2-mx-3=0\)(1)
Vì ac<0 nên phương trình (1) luôn có hai nghiệm phân biệt
hay (P) và (d) luôn cắt nhau tại hai điểm phân biệt với mọi m(Đpcm)