K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2020

Trả lời: 

Phương trình hoành độ giao điểm (P) và (d) ta có:

\(-x^2=2x+m-1\)

\(\Leftrightarrow x^2+2x+m-1=0\)(1)

Ta có: \(\Delta=2^2-4.1.\left(m-1\right)\)

              \(=4-4m+4\)

               \(=8-4m\)

Để phương trình (1) có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\)

                                                                \(\Leftrightarrow8-4m>0\)

                                                                \(\Leftrightarrow4m< 8\)

                                                                 \(\Leftrightarrow m< 2\)

\(\Rightarrow\)Phương trình (1) có 2 nghiệm phân biệt 

\(\Rightarrow\)(d) cắt (P) tại 2 diểm phân biệt \(A\left(x_1,y_1\right);B\left(x_2,y_2\right)\)

Áp dụng Vi-ét \(\hept{\begin{cases}x_1+x_2=-2\left(1\right)\\x_1.x_2=m-1\left(2\right)\end{cases}}\)

Ta có \(y_1=-x_1^2\)\(y_2=-x_2^2\)

Theo đề bài:

\(x_1.y_1-x_2.y_2-x_1.x_2=4\)

\(\Leftrightarrow x_1.\left(-x_1^2\right)-x_2.\left(-x_2^2\right)-x_1.x_2=4\)

\(\Leftrightarrow-x_1^3+x_2^3-x_1.x_2=4\)

\(\Leftrightarrow-\left(x_1^3-x_2^3\right)-\left(m-1\right)=4\)

\(\Leftrightarrow-\left(x_1-x_2\right).\left(x_1^2+x_1.x_2+x_2^2\right)-\left(m-1\right)=4\)

\(\Leftrightarrow-\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-2x_1.x_2+x_1.x_2\right]-\left(m-1\right)=4\)

\(\Leftrightarrow-\left(x_1-x_2\right).\left[\left(x_1+x_2\right)^2-x_1.x_2\right]-\left(m-1\right)=4\)

\(\Leftrightarrow-\left(x_1-x_2\right).\left[\left(-2\right)^2-m+1\right]-\left(m-1\right)=4\)

\(\Leftrightarrow-\left(x_1-x_2\right).\left(4-m+1\right)=4+m-1\)

\(\Leftrightarrow-\left(x_1-x_2\right).\left(3-m\right)=m+3\)

\(\Leftrightarrow-\left(x_1-x_2\right)=\frac{m+3}{3-m}\)

\(\Leftrightarrow x_1-x_2=\frac{m+3}{m-3}\)(3)

Từ (1) (3) ta có: \(\hept{\begin{cases}x_1+x_2=-2\\x_1-x_2=\frac{m+3}{m-3}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x_1=-2+\frac{m+3}{m-3}=\frac{9-m}{m-3}=-\left(m+3\right)\\x_1+x_2=-2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_1=\frac{-\left(m+3\right)}{2}\\x_2=\frac{m-1}{2}\end{cases}}\)

Thay x1, x2 vào (2) ta có

\(x_1.x_2=m-1\)

\(\Leftrightarrow\frac{-\left(m+3\right)}{2}.\frac{m-1}{2}=m-1\)

\(\Leftrightarrow\frac{-\left(m+3\right)}{2}=2\)

\(\Leftrightarrow-\left(m+3\right)=4\)

\(\Leftrightarrow m+3=-4\)

\(\Leftrightarrow m=-7\)(TM)

Vậy \(m=-7\) thì thỏa mãn bài toán 

27 tháng 3 2023

tại sao y1=-x1^2 vậy ạ ?

24 tháng 4 2023

\(y_1+y_2-x_1x_2\) bằng cái gì vậy bạn ?

25 tháng 4 2023

Bằng 1 nha

3 tháng 6 2017
  1. xét phương trình hoành độ giao điểm :  \(x^2=\left(2m-1\right)x-m+2\)\(\Leftrightarrow x^2-\left(2m-1\right)x+m-2=0\)có \(\Delta=\left(2m-1\right)^2-4\left(m-2\right)=4m^2-8m+9=\left(2m-1\right)^2+8\ge8\)vậy nên  phương trinh luôn có 2 nghiệm phân biệt tức hai đồ thị luôn cắt nhau tại 2 điểm phân biệt A và B
  2. Có viet : \(\hept{\begin{cases}x_1+x_2=2m-1\\x_1x_2=m-2\end{cases}}\)ta có : \(A\left(x_1,y_1\right)=A\left(x_1,x_1^2\right)\)và \(B\left(x_2,y_2\right)=B\left(x_2,x_2^2\right)\)

nên ta có : \(x_1y_1+x_2y_2=0\Leftrightarrow x_1^3+x_2^3=0\)\(\Leftrightarrow\left(x_1+x_2\right)\left(\left(x_1+x_2\right)^2-3x_1x_2\right)=0\)\(\Leftrightarrow\left(2m-1\right)\left[\left(2m-1\right)^2-3m+6\right]=0\)

  • \(2m-1=0\Leftrightarrow m=\frac{1}{2}\)
  • \(\left(2m-1\right)^2-3m+6=0\Leftrightarrow4m^2-7m-7=0\)VN
28 tháng 2 2019

2. Cho parabol (P): y = x2 và đường thẳng (d): y = 2(m – 1)x + m2 + 2m (m là tham số, m ∈ R )

a) Chứng minh rằng đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt A, B?

b) Gọi H và K lần lượt là hình chiếu của A và B trên trục hoành.

Tìm m sao cho: OH2 + OK2 = 6     mọi người hướng dẫ mk ý b vs

PTHĐGĐ là:

x^2-(2m+1)x+2m=0

Δ=(2m+1)^2-4*2m

=4m^2+4m+1-8m=(2m-1)^2

Để (P) cắt (d) tại hai điểm phân biệt thì 2m-1<>0

=>m<>1/2

y1+y2-x1x2=1

=>(x1+x2)^2-3x1x2=1

=>(2m+1)^2-3*2m=1

=>4m^2+4m+1-6m-1=0

=>4m^2-2m=0

=>m=0 hoặc m=1/2(loại)

31 tháng 5 2017

đường thẳng \(d^'\)và \(d\)cắt nhau tại một điểm A trên trục tung nên điểm A có hoành độ \(x_a=0\)và tạo độ A thỏa mãn phương trình \(d^'\)nên :\(\Rightarrow y_a=-2.0+1=1\)\(\Rightarrow A\left(0;1\right)\)Mà do a là giao điểm của 2 đường \(d;d^'\)nên toạn độ A cũng thỏa mãn phương trình của \(d\)\(\Rightarrow1=-m^2+m+1\Leftrightarrow m^2-m=0\Leftrightarrow m\left(m-1\right)=0\Leftrightarrow m\orbr{\begin{cases}m=0\\m=1\end{cases}}\)

câu b :

Xét phương trình hoành độ gia điểm của P và d có :

\(x^2=2mx-m^2+m+1\Leftrightarrow x^2-2mx+m^2-m-1=0\)

để hai đồ thị cắt nhau tại 2 điểm phân biệt thì \(\Delta^'=m^2+m^2-m-1=2m^2-m-1>0\)

\(\left(m-1\right)\left(2m+1\right)>0\Leftrightarrow\orbr{\begin{cases}m< -\frac{1}{2}\\m>1\end{cases}}@\)

khi đó theo vieet có :\(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=-m^2+m+1\end{cases}}\)

\(\Rightarrow y_1+y_2+2\left(x_1+x_2\right)=22\)với \(y_1=x^2_1;y_2=x_2^2\)

\(\Rightarrow\left(\left(x_1+x_2\right)^2-2x_1.x_2\right)+\left(x_1+x_2\right)2=22\)thay vieet ta có :

\(\left(2m\right)^2-2\left(-m^2+m+1\right)+2.2m=22\)

\(\Leftrightarrow6m^2+2m-24=0\Leftrightarrow\orbr{\begin{cases}m=\frac{-1+\sqrt{144}}{6}\\m=\frac{-1-\sqrt{144}}{6}\end{cases}}\)thỏa mãn @ 

Kết luận nghiệm

tính denta sai rùi rùi bạn ơi 

phải là 145 chứ ko phải 144 

a: Thay x=-1 và y=3 vào (d), ta được:

-2-m+1=3

=>-1-m=3

=>m+1=-3

hay m=-4

 

13 tháng 1 2022

Còn phần b nữa bạn ơi

PTHĐGĐ là;

x^2-3x-m^2+1=0

Δ=(-3)^2-4(-m^2+1)=4m^2-4+9=4m^2+5>0

=>Phương trình luôn có hai nghiệm phân biệt

TH1: x1>0; x2>0

=>x1+2x2=3

mà x1+x2=3

nên x1=1; x2=1

x1*x2=-m^2+1

=>-m^2+1=1

=>m=0

TH2: x1<0; x2>0

=>-x1+2x2=3 và x1+x2=3

=>x1=1; x2=2

x1*x2=-m^2+1

=>-m^2+1=2

=>-m^2-1=0(loại)

TH2: x1>0; x2<0

=>x1-2x2=0 va x1+x2=3

=>x1=2 và x2=1

x1*x2=-m^2+1

=>-m^2+1=2

=>-m^2=1(loại)

TH3: x1<0; x2<0

=>-x1-2x2=3 và x1+x2=3

=>x1=9 và x2=-6

x1*x2=-m^2+1

=>-m^2+1=-54

=>-m^2=-55

=>\(m=\pm\sqrt{55}\)

1 tháng 5 2023

|x1|+2 |x2| = 3 : .

làm sao chứng minh đc