Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét Parabol \(\left(P\right):y=x^2\)
và đường thẳng \(\left(d\right):y=\left(2m-1\right)x-m+2\)
Phương trình hoành độ giao điểm của \(\left(P\right)\) và \(\left(d\right)\) ta có :
\(x^2=\left(2m-1\right)x-m+2\)
\(\Leftrightarrow x^2-\left(2m-1\right)x+m-2=0\)
\(\left(a=1;b=-\left(2m-1\right);c=m-2\right)\)
Ta có :
\(\Delta=b^2-4ac\)
\(=\left(-\left(2m-1\right)\right)^2-4.1.\left(m-2\right)\)
\(=4m^2-4m+1-4m+8\)
\(=4m^2-8m+9\)
\(=4\left(m^2-2m+1\right)+5\)
\(=4\left(m-1\right)^2+5>0\forall m\)
\(\Leftrightarrow\Delta>0\)
\(\Leftrightarrow\) \(\left(P\right)\) và \(\left(d\right)\) luôn cắt nhau tại 2 điểm phân biệt \(\left(đpcm\right)\)
a/ Ta có
^AIB=90 (góc nt chắn nửa đường tròn) => BI vuông góc AE
d vuông góc với AB tại M
=> M và I cùng nhìn BE dưới 1 góc 90 => M; I cùng nằm trên đường tròn đường kính BE => MBEI là tứ giác nội tiếp
b/ Xét tam giác vuông MEA và tam giác vuông IEH có ^AEM chung => tg MEA đồng dạng với tg IEH
d/ Xét tg ABE có
BI vuông góc AE
ME vuông góc AB
=> H là trực tâm cuat tg ABE
Ta có ^AKB =90 (góc nt chắn nửa đường tròn => AK vuông góc với BE
=> AK đi qua H (trong tam giác 3 đường cao đồng quy
=> Khi E thay đổi HK luôn đi qua A cố định
Cô hướng dẫn nhé :)
a. Ta thấy góc MBE = góc BIE = 90 độ nên từ giác MBEI nội tiếp đường tròn đường kính BE, vậy tâm là trung điểm BE.
b. \(\Delta IEH\sim\Delta MEA\left(g-g\right)\) vì có góc EIH = góc EMA = 90 độ và góc E chung.
c. Từ câu b ta có : \(\frac{IE}{EM}=\frac{EH}{EA}\Rightarrow EH.EM=IE.EA\) Vậy ta cần chứng minh \(EC.ED=IE.EA\)
Điều này suy ra được từ việc chứng minh \(\Delta IED\sim\Delta CEA\left(g-g\right)\)
Hai tam giác trên có góc E chung. góc DIE = góc ACE (Tứ giác AIDC nội tiếp nên góc ngoài bằng góc tại đỉnh đối diện)
d. Xét tam giác ABE, ta thấy do I thuộc đường trong nên góc AIB = 90 độ. Vậy EM và BI là các đường cao, hay H là trực tâm của tam giác ABE. Ta thấy AK vuông góc BE, AH vuông góc BE, từ đó suy ra A, H ,K thẳng hàng. Vậy khi E thay đổi HK luôn đi qua A.
Tự mình trình bày để hiểu hơn nhé . Chúc em học tốt ^^
a: Xét ΔABC có
BE là đường cao
CF là đường cao
BE cắt CF tại H
Do đó: H là trực tâm của ΔABC
Tự vẽ hình
Vì CD vuông góc với AB tại B
Nên: Góc ABC = Góc ABD = 90 độ
Xét (O) có góc ABC = 90 độ nên AC là đường kính của (O)
Xét (O') có góc ABD = 90 độ nên AD là đường kính của (O')
Ta có: OA = OC ( vì AC là đường kính của (O) )
O'A = O'D ( vì AD là đường kính của (O') )
=> OO' là đường trung bình của tam giác ACD
=> OO' = 1/2CD
=> Đpcm
a: Vì (d)//y=2x+4 nên m=2
Vậy: (d): y=2x+3-2n
Thay x=1 và y=2 vào (d), ta được:
5-2n=2
hay n=3/2
PTHĐGĐ là:
2x^2-(2m-3)x-m=0
Δ=(2m-3)^2-4*2(-m)
=4m^2-12m+9+8m
=4m^2-4m+9
=(2m-1)^2+8>0
=>(P) luôn cắt (d) tại hai điểm phân biệt