Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì p là số nguyen tố lớn hơn 3 nên p là số lẻ không chia hết cho 3\(\Rightarrow\)
p không chia hết cho 3 thì p^2 chia 3 dư 1 nên p^2-1 chia hết cho 3 (1)
Lại có p^2-1=(p-1)(p+1) vì p là số lẻ nên p-1 và p+1 là 2 số chẵn liên tiếp nên (p-1)(p+1) chia hết cho 8(2)
Từ (1) và (2) suy ra p^2-1 chia hết cho 3.8=24(vì 8 và 3 nguyên tố cùng nhau)
p là số nguyên tố lớn hơn 5 nên p không chia hết cho 3
=> p = 3k+1 ; 3k+ 2 ( k thuộc N )
Nếu p=3k+1 => 2p+1 = 2(3k+1)+1=6k+3 chia hết cho 3 --> vô lí
=> p=3k+2
=> p(p+5)+31=(3k+2)(3k+7)+31=9k^2+27k+14+31=9k^2+27k+45 chia hết cho 3
=> p(p+5)+31 là hợp số (đpcm )
a) Số dư của p2 cho 3 là 1
b) Khi p là số lẻ thì p2 + 2015 là hợp số
Khi p là số chẵn thì p2 + 2015 là số nguyên tố
Đặt p =3k+1\(\Rightarrow p^2+2012⋮3\)và lớn hơn 3 nên là hợp số
tương tự p=3k+2
p co dang 3k+1 hoac 3k+2 3k+1 :9k^2+6k+1+2012=9k^2+6k+2013 ,tong nay chia het 3 3k+2 :9k^2+12k+4+2012=9k^2+12k+2016 ,tong nay chia het 3 dpcm