Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án D
* Gọi (O’) là đường tròn đi qua D và tiếp xúc với AB tại B.
Đường tròn (O’) cắt CB tại F khác B. Chứng minh E F / / A B .
Ta có:
Hai góc ở vị trí đồng vị ⇒ E F / / A B
a: sđ cung AC=2/3*180=120 độ
=>sđ cung AM=sđ cung MC=120/2=60 độ
sđ cung NB=sđ cung NC=60/2=30 độ
góc MIC=1/2(sđ cung AB+sđ cung MC)
=1/2(180+60)=120 độ
b: N là điểm chính giữa của cung BC
=>ON vuông góc bC
=>ON//AC
=>DN vuông góc NO
=>DN là tiếp tuyến của (O)
a) Xét tam giác DAC và tam giác DBE có:
\(\left\{{}\begin{matrix}\widehat{ADC}=\widehat{BDE}\left(\text{đối đỉnh}\right)\\\widehat{DAC}=\widehat{DBE}\left(=\dfrac{1}{2}sđ\stackrel\frown{CE}\right)\end{matrix}\right.\)
\(\Rightarrow\Delta DAC\sim\Delta DBE\left(g.g\right)\)
\(\Rightarrow\dfrac{DA}{DC}=\dfrac{DB}{DE}\Rightarrow DA.DE=DB.DC\).
b) Ta có \(\widehat{FCB}=\widehat{FEA}=90^o\) nên tứ giác FCDE nội tiếp đường tròn đường kính FD.
c) Dễ thấy I là trung điểm của FD.
Từ đó tam giác ICD cân tại I.
Dễ thấy D là trực tâm của tam giác FAB nên \(FD\perp AB\). Ta có: \(\widehat{ICD}=\widehat{IDC}=90^o-\widehat{AFD}=\widehat{BAC}=\dfrac{1}{2}sđ\stackrel\frown{BC}\) nên IC là tiếp tuyến của (O).
a.tứ giác AMDO nội tiếp (∠AOD+∠AMD=180)
⇒BD.BM=BO.BA
mà A,B,O cố định nên BO.BA không đổi
⇒BD.BM không có giá trị phụ thuộc vào vị trí điểm m
b.có ∠EMB=\(\dfrac{1}{2}\stackrel\frown{MB}\) (góc tạo bởi tia tiếp tuyến và dây cung)
do tứ giác AMDO nội tiếp⇒∠MAO=∠MDE(1)
∠MAO=\(\dfrac{1}{2}\stackrel\frown{MB}\)
⇒∠EMB=∠MAO(2)
từ (1) và (2) ⇒∠EMB=∠MDE
⇒ΔEMD cân tại E
⇒ED=EM