Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: ΔOAM cân tại O
mà OC là trung tuyến
nên OC vuông góc AM
góc OBN+góc OCN=180 độ
=>OCNB nội tiếp
2: Xét ΔACO vuông tại C và ΔABN vuông tại B có
góc CAO chung
=>ΔACO đồng dạng với ΔABN
=>AC/AB=AO/AN
=>AC*AN=AO*AB
a: góc ACB=1/2*180=90 độ
=>AC vuông góc BE
góc AME+góc ACE=180 độ
=>AMEC nội tiếp
b: Xét ΔBCA vuông tại C và ΔBME vuông tại M có
góc CBA chung
=>ΔBCA đồng dạng với ΔBME
=>BC/BM=BA/BE
=>BE*BA=BM*BA=3R*2R=6R^2
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó ΔACB vuông tại C
=>AC\(\perp\)CB tại C
=>AC\(\perp\)FB tại C
=>EC\(\perp\)CF tại C
=>ΔECF vuông tại C
Xét (O) có
\(\widehat{ICA}\) là góc tạo bởi tiếp tuyến CI và dây cung CA
\(\widehat{CBA}\) là góc nội tiếp chắn cung CA
Do đó: \(\widehat{ICA}=\widehat{CBA}\)
mà \(\widehat{CBA}=\widehat{AED}\left(=90^0-\widehat{CAB}\right)\)
và \(\widehat{AED}=\widehat{IEC}\)(hai góc đối đỉnh)
nên \(\widehat{ICA}=\widehat{IEC}\)
=>\(\widehat{ICE}=\widehat{IEC}\)
=>IE=IC
Ta có: \(\widehat{IEC}+\widehat{IFC}=90^0\)(ΔCFE vuông tại C)
\(\widehat{ICE}+\widehat{ICF}=\widehat{FCE}=90^0\)
mà \(\widehat{IEC}=\widehat{ICE}\)
nên \(\widehat{IFC}=\widehat{ICF}\)
=>IF=IC
mà IE=IC
nên IE=IF
=>I là trung điểm của EF
b: Vì ΔCFE vuông tại C
nên ΔCFE nội tiếp đường tròn đường kính EF
=>ΔCFE nội tiếp (I)
Xét (I) có
IC là bán kính
OC\(\perp\)CI tại C
Do đó: OC là tiếp tuyến của (I)
=>OC là tiếp tuyến của đường tròn ngoại tiếp ΔECF
a) Xét (O) có
ΔBMA nội tiếp đường tròn(B,M,A∈(O))
BA là đường kính(gt)
Do đó: ΔBMA vuông tại M(Định lí)
Xét (O) có
AB là đường kính của (O)(gt)
nên O là trung điểm của AB
Xét ΔBMA có
O là trung điểm của AB(gt)
C là trung điểm của AM(gt)
Do đó: OC là đường trung bình của ΔBMA(Định nghĩa đường trung bình của tam giác)
⇒OC//BM và \(OC=\dfrac{BM}{2}\)(Định lí 2 về đường trung bình của tam giác)
Ta có: OC//BM(cmt)
BM⊥BA(ΔBMA vuông tại M)
Do đó: OC⊥AM(Định lí 2 từ vuông góc tới song song)
Xét tứ giác OCNB có
\(\widehat{OCN}\) và \(\widehat{OBN}\) là hai góc đối
\(\widehat{OCN}+\widehat{OBN}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: OCNB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
b) Xét ΔNBA vuông tại B và ΔOCA vuông tại C có
\(\widehat{OAC}\) chung
Do đó: ΔNBA∼ΔOCA(g-g)
⇒\(\dfrac{AB}{AC}=\dfrac{AN}{AO}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AC\cdot AN=AO\cdot AB\)(đpcm)
c) Ta có: OC⊥AN(cmt)
mà E∈OC(gt)
nên EC⊥NA
Xét ΔNEA có
EC là đường cao ứng với cạnh NA(cmt)
AB là đường cao ứng với cạnh NE(gt)
EC cắt AB tại O(gt)
Do đó: O là trực tâm của ΔNEA(Định lí ba đường cao của tam giác)
⇒NO⊥AE(đpcm)
Cho mik xin cái hình vs ạ