K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2017

Ta có:

ab = bc

\(\Rightarrow\) a = c (1)

bc = cd

\(\Rightarrow\) b = d (2)

cd = de

\(\Rightarrow\) c = e (3)

de = ea

\(\Rightarrow\) d = a (4)

ea = ab

\(\Rightarrow\) e = b (5)

Từ (1), (2), (3), (4), (5) \(\Rightarrow\) a = b = c = d = e

\(\Rightarrow\) ĐPCM

22 tháng 10 2017

Mấy bài rồi?hihi

FIGHTING!!!haha

14 tháng 3 2019

Giả sử 2 số trong 5 số không bằng nhau . VD : a<b (1)

Vì vậy do ab=bc mà a<b => c<b

Ta có bc=cd mà c<b => c<d

Ta có cd = de mà c<d => e<d

Ta có de = ea mà e<d => a>e

Ta có ea = ab mà a>e => a>b (2)

Từ (1) và (2) => Giả sử trên là vô lí 

Vậy a=b=c=d ( đcpm )

14 tháng 3 2019

Thma khảo:Câu hỏi của Nguyễn Ngọc Sơn Lâm - Toán lớp 7 - Học toán với OnlineMath

8 tháng 3 2015

Giả sử:

Th1: a>b>c>d>e

=> a^b>b^c>c^d>d^e>e^a

=>a^b=b^c=c^d=d^e=e^a là sai

=>theo phương pháp chứng minh phản chứng =>.a=b=c=d=e là đúng.

Th2: a<b<c<d<e

(Giải tương tự Th1)

26 tháng 4 2016

ab = bc = cd = d= ed

Ta có: d= ed

=> d và e bằng nhau.

Lại có: cd = ed

=> c và e bằng nhau

=> c,d,e bằng nhau

=> b$bd$bd(Vì c =d)

Mà  bc = cd = d= ed

Nên bd= cd = d= ed

=> b,c,d,e bằng nhau.

Tiếp tục có: ab = bc = cd = d= ed

bi roi nha

26 tháng 4 2016

Bo may eo biet gi ca

23 tháng 7 2017

viết dạng hệ cho dẽ nhìn 
a^b = b^c (1) 
b^c = c^d (2) 
c^d = d^e (3) 
d^e = e^a(4) 
e^a=a^b(5) 
*********dùng pp phải chứng 
******************* 
giả sử có 5 số tự nhiên thỏa mãn trên 
không thay đổi ý nghia giả sử 
a>=b>=c>=d>e>=1 
*****hàm mũ lũy thừa cơ số 1 rất đặc biệt khử cái này trước******* 
nếu e=1 
=> a>=b>=c>=d>=2 (*) 
từ (5) => a=1 hoặc b=0 => không thỏa mãn (*)=> e<>1 
ok 
giờ có 
a>=b>=c>=d>e>=2 
từ(3) 
c^d = d^e (3) 
c>=d=> d<=e mâu thuẫn d>e 
các số a,b,c,d,e có thể hoán đổi vị trí cho nhau 
=>ít nhất có một phương trình không thỏa mãn 
=> dpcm

16 tháng 3 2018

cái ồn