Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho năm số tự nhiên a, b, c, d, e thỏa mãn ab = bc = cd = de = ea
CMR: năm số a, b, c, d, e bằng nhau
Giả sử 2 số trong 5 số không bằng nhau . VD : a<b (1)
Vì vậy do ab=bc mà a<b => c<b
Ta có bc=cd mà c<b => c<d
Ta có cd = de mà c<d => e<d
Ta có de = ea mà e<d => a>e
Ta có ea = ab mà a>e => a>b (2)
Từ (1) và (2) => Giả sử trên là vô lí
Vậy a=b=c=d ( đcpm )
Thma khảo:Câu hỏi của Nguyễn Ngọc Sơn Lâm - Toán lớp 7 - Học toán với OnlineMath
Không mất tính tổng quát giả sử \(a\ge b\)
Vì \(a^b=b^c\Rightarrow b\le c\)
Vì \(b^c=c^d\Rightarrow c\ge d\)
Vì \(c^d=d^e\Rightarrow d\le e\)
Vì \(d^e=e^a\Rightarrow a\ge a\)
Vì \(e^a=a^b\Rightarrow a\le b\)
Trái với điều giả sử nên xảy ra khi \(a=b\)
Khi đó suy ra \(a=b=c=d=e\) (ĐPCM)
Ta có:
ab = bc
\(\Rightarrow\) a = c (1)
bc = cd
\(\Rightarrow\) b = d (2)
cd = de
\(\Rightarrow\) c = e (3)
de = ea
\(\Rightarrow\) d = a (4)
ea = ab
\(\Rightarrow\) e = b (5)
Từ (1), (2), (3), (4), (5) \(\Rightarrow\) a = b = c = d = e
\(\Rightarrow\) ĐPCM
Mấy bài rồi?
FIGHTING!!!