Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A,
Từ đề bài ta có
\(2n+3;2n+2⋮d\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
suy ra d=1 suy ra đpcm
B nhân 3 vào số đầu tiên
nhâm 2 vào số thứ 2
rồi trừ đi được đpcm
C,
Nhân 2 vào số đầu tiên rồi trừ đi được đpcm
a) Gọi \(d\)là ước chung của \(n+3;n+4\)
\(\Rightarrow n+3⋮d\)và \(n+4⋮d\)
\(\Rightarrow n+3-\left(n+4\right)⋮d\)
\(\Rightarrow n+3-n-4⋮d\)
\(\Rightarrow-1⋮d\Rightarrow d=-1;1\)
Tử và mẫu chỉ có ước chung là -1;1 nên phân số \(\frac{n+3}{n+4}\)là phân số tối giản (đpcm)
dài kinh,bài này chắc làm đến tối! bn ơi,bn cho từng câu một thôi!đau đầu lắm!
a) Có:n+3 chia hết n-2
Mà:n-2 chia hết n-2
Xét: (n+3)-(n-2) chia hết n-2
n+3-n+2 chia hết cho n-2
(n-n)+3-2 chia hết cho n-2
1 chia hết cho n-2
nên: n-2 E Ư(1)={1:-1}
Xét:
n-2=1 n-2=-1
n =1+2 n =-1+2
n =3 E Z(chọn) n =1 E Z(chọn)
Vậy:n={1;3}
a) Có:n+3 chia hết n-2
Mà:n-2 chia hết n-2
Xét: (n+3)-(n-2) chia hết n-2
n+3-n+2 chia hết cho n-2
(n-n)+3+2 chia hết cho n-2
5 chia hết cho n-2
nên: n-2 E Ư(5)={1:-1;5;-5}
Xét:
n-2=1 n-2=-1 n-2=5 n-2=-5
n =1+2 n =-1+2 n =5+2 n =-5+2
n =3 n =1 n =7 n=-3
Vậy:n={1;3;-3;7}
a) 2n + 11 chia hết cho n + 3
⇒ 2n + 6 + 5 chia hết cho n + 3
⇒ 2(n + 3) + 5 chia hết cho n + 3
⇒ 5 chia hết cho n + 3
⇒ n + 3 ∈ Ư(5) = {1; -1; 5; -5}
⇒ n ∈ {-2; -4; 2; -8}
b) n + 5 chia hết cho n - 1
⇒ n - 1 + 6 chia hết cho n - 1
⇒ 6 chia hết cho n - 1
⇒ n - 1 ∈ Ư(6) = {1; -1; 2; -2; 3; -3; 6; -6}
⇒ n ∈ {2; 0; 3; -1; 4; -2; 7; -5}
c) 3n + 10 chia hết cho n + 2
⇒ 3n + 6 + 4 chia hết cho n + 2
⇒ 3(n + 2) + 4 chia hết cho n + 2
⇒ 4 chia hết cho n + 2
⇒ n + 2 ∈ Ư(4) = {1; -1; 2; -2; 4; -4}
⇒ n ∈ {-1; -3; 0; -4; 2; -6}
d) 2n + 7 chia hết cho 2n + 1
⇒ 2n + 1 + 6 chia hết cho 2n + 1
⇒ 6 chia hết cho 2n + 1
⇒ 2n + 1 ∈ Ư(6) = {1; -1; 2; -2; 3; -3; 6; -6}
Mà: n ∈ N ⇒ 2n + 1 là số lẻ
⇒ 2n + 1 ∈ {1; -1; 3; -3}
⇒ n ∈ {0; -1; 1; -2}
a: Gọi d=UCLN(2n+1;2n+3)
\(\Leftrightarrow2n+3-2n-1⋮d\)
\(\Leftrightarrow2⋮d\)
mà 2n+1 là số lẻ
nên d=1
=>(2n+1;2n+3)=1
b: Gọi a=UCLN(2n+7;n+3)
\(\Leftrightarrow2n+7-2n-6⋮a\)
=>a=1
=>UCLN(2n+7;n+3)=1
d) Để \(\dfrac{n+1}{2n+1}\in Z\) thì \(n+1⋮2n+1\)
\(\Leftrightarrow1⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1\right\}\)
\(\Leftrightarrow2n\in\left\{0;-2\right\}\)
hay \(n\in\left\{0;-1\right\}\)
Mk trả lời mỗi câu khó nha!!!
d*) \(\dfrac{n+1}{2n+1}\in Z\)
Để \(\dfrac{n+1}{2n+1}\in Z\) thì \(n+1⋮2n+1\)
\(n+1⋮2n+1\)
\(\Rightarrow2.\left(n+1\right)⋮2n+1\)
\(\Rightarrow2n+2⋮2n+1\)
\(\Rightarrow2n+1+1⋮2n+1\)
\(\Rightarrow1⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
Ta có bảng giá trị:
2n+1 | -1 | 1 |
n | -1 | 0 |
Vậy \(n\in\left\{-1;0\right\}\)
a)2n+17/n-3
=>(2n-6)+23/n-3
=>2(n-3)+23/n-3
=>2+23/n-3
=>23/n-3
=>(n-3)=Ư(23)={1;-1;23;-23}
n-3=1=>n=4
n-3=-1=>n=2
n-3=23=>n=26
n-3=-23=>n=-20
Còn câu B thì bạn tự làm nhé!