Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 2n + 1 = 2(n + 2) - 3
Do n + 2 \(⋮\)n + 2 => 2(n + 2) \(⋮\)n + 2
Để 2n + 1 \(⋮\)n + 2 thì 3 \(⋮\)n + 2 => n + 2 \(\in\)Ư(3) = {1; 3; -1; -3}
Lập bảng :
n+2 | 1 | 3 | -1 | -3 |
n | -1 | 1 | -3 | -5 |
Vì n nhỏ nhất nên n = -5
Vậy ...
3^n+2 - 2^n+2 + 3^n - 2^n = (3n+2+3n)+(-2n+2-2n)
=3n.(32+1)-2n.(22+1)
=3n.10-2n.5
=3n.10-2n-1.2.5
=3n.10-2n-1.10
=10.(3n-2n-1)
Vậy 3^n+2 - 2^n+2 + 3^n - 2^n chia hết cho 10
a) ta có: 3n + 2 chia hết cho n - 1
=> 3n - 3 + 5 chia hết cho n -1
3.(n-1) + 5 chia hết cho n - 1
mà 3.(n-1) chia hết cho n -1
=> 5 chia hết cho n - 1
=> n - 1 thuộc Ư(5)={1;-1;5;-5}
...
rùi bn tự lập bảng xét giá trị hộ mk nha!!!
b) ta có: n^2 + 2n + 7 chia hết cho n + 2
=> n.(n+2) + 7 chia hết cho n + 2
mà n.(n+2) chia hết cho n + 2
=> 7 chia hết cho n + 2
=>...
c) ta có: n^2 + 1 chia hết cho n - 1
=> n^2 - n + n -1 + 2 chia hết cho n - 1
n.(n-1) + (n-1) + 2 chia hết cho n -1
(n-1).(n+1) + 2 chia hết cho n - 1
mà (n-1).(n+1) chia hết cho n - 1
=> 2 chia hết cho n - 1
...
câu e;g bn dựa vào phần a mak lm nha!!!
\(d,n+8⋮n+3\)
\(\Leftrightarrow\left(n+3\right)+5⋮n+3\)
\(\Leftrightarrow n+3⋮n+3\Rightarrow5⋮n+3\)
\(\Leftrightarrow n+3\in\left(1;5\right)\)
\(\Leftrightarrow n+3=1\Rightarrow n=-2\left(l\right)\)
\(\Leftrightarrow n+3=5\Rightarrow n=2\left(c\right)\)
ta có: 4n + 3\(⋮\)n - 1
\(\Leftrightarrow\)4n - 4 + 7 \(⋮\)n - 1
\(\Leftrightarrow\)4(n - 1) + 7 \(⋮\)n - 1
mà 4(n - 1) \(⋮\)n - 1
nên 7 \(⋮\)n - 1
vậy \(n-1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
vì \(n\in N\)nên ta xét bảng sau:
n - 1 | n |
1 | 2 |
-1 | 0 |
7 | 8 |
Vậy \(n\in\left\{2;0;8\right\}\)
suy ra 4n-4+17 chia hết cho n-1
mà 4n-4 chia hết cho n-1
suy ra 17 chia hết n-1
suy ra n-1 thuộc ước của 17
suy ra n-1 thuộc các giá trị 1:-1:17:-17
suy ra n thuộc các giá trị 2 :0;18;-16 mà n thuộc N suy ra n = 2;0;18
Vì n là số có 2 chữ số
→10≤n≤99→21≤2n+1≤199
Vì 2n+1 là số chính phương→2n+1∈{25;36;49,64;81;100;121;144;169;196}
Vì 2n+1 là số lẻ→2n+1∈{25;49;81;121;169}
Ta có bảng sau:
2n+1 | 25 | 49 | 81 | 121 | 169 |
n | 12 | 24 | 40 | 60 | 84 |
3n+1 | 37 | 73 | 121 | 181 | 253 |
Với n=40 thì 2n+1=81 là số chính phương và 3n+1=121 là số chính phương
Vậy n=40
Vì n là số có 2 chữ số
\(\rightarrow10\le n\le99\)\(\rightarrow21\le2n+1\le199\)
Vì 2n+1 là số chính phương\(\rightarrow2n+1\in\left\{25;36;49,64;81;100;121;144;169;196\right\}\)
Vì 2n+1 là số lẻ\(\rightarrow2n+1\in\left\{25;49;81;121;169\right\}\)
Ta có bảng sau:
2n+1 | 25 | 49 | 81 | 121 | 169 |
n | 12 | 24 | 40 | 60 | 84 |
3n+1 | 37 | 73 | 121 | 181 | 253 |
Với n=40 thì 2n+1=81 là số chính phương và 3n+1=121 là số chính phương
Vậy n=40