K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2017

Gợi ý:
Cách làm:Sử dụng tính chất:Trong n stn liên tiếp luôn có 1 và chỉ 1 stn chia hết cho n.

Chứng minh đc trong tích trên có 1 số chia hết cho 3 và ít nhất 1 số chia hết cho 2.

Vậy là xong.

11 tháng 6 2018

Đặt \(A=n\left(n+1\right)\left(2n+1\right)\)

+) \(n=2k\Rightarrow A⋮2\)

+) \(n=2k+1\Rightarrow n+1=2k+1+1=2\left(k+1\right)⋮2\Rightarrow A⋮2\)

\(\Rightarrow A⋮2\) (2)

+) \(n=3k\Rightarrow A⋮3\)

+) \(n=3k+1\Rightarrow2n+1=2\left(3k+1\right)+1=3\left(2k+1\right)⋮3\Rightarrow A⋮3\)

+) \(n=3k+2\Rightarrow n+1=3k+2+1=3\left(k+1\right)⋮3\)

\(\Rightarrow A⋮3\) (1)

\(\text{Từ (1); (2): }\Rightarrow A⋮2.3=6\left(n\inℕ\right)\)

9 tháng 6 2017

chia hết cho con cờ

2 tháng 5 2016

ở nơi nào có cô ấy xuất hiện những người khác chỉ là tạm bợm

nói về tình yêu  tình yêu là  cho đi không có bất kì toan tính hay ý nghĩa nào khác

tình yêu là sự thuần khiết là đồng cam cộng khổ 

2 tháng 5 2016

hay thi k đi

23 tháng 8 2015

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6

Sửa đề: \(11\cdot5^{2n}+2^{3n+2}+2^{3n+1}\)

Ta có: \(11\cdot5^{2n}+2^{3n+2}+2^{3n+1}\)

\(=11\cdot25^n+8^n\cdot4+8^n\cdot2\)

\(=11\cdot25^n+6\cdot8^n\)

Vì \(25\equiv8\)(mod 17)

nên \(11\cdot25^n+6\cdot8^n\equiv11\cdot8^n+6\cdot8^n\equiv17\cdot8^n\equiv0\)(mod 17)

hay \(11\cdot5^{2n}+2^{3n+2}+2^{3n+1}⋮17\)(đpcm)