K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Nhận thấy 323=17.19323=17.19 và (17;19)=1(17;19)=1 nên ta cần chứng minh 20n−1+16n−3n20n−1+16n−3n chia hết cho số 1717 và 1919

Ta có 

20n−1⋮(20−1)=19;16n−3n⋮(16+3)=1920n−1⋮(20−1)=19;16n−3n⋮(16+3)=19 (vì nn chẵn)          (∗)(∗)

Mặt khác

20n+16n−3n−1=20n−3n+16n−120n+16n−3n−1=20n−3n+16n−1 

và 20n−3n⋮(20−3)=17;16n−1⋮(16+1)=1720n−3n⋮(20−3)=17;16n−1⋮(16+1)=17                           (∗∗)(∗∗)

Từ (∗)(∗∗)(∗)(∗∗) ta suy ra đpcm

Nhận thấy 323=17.19323=17.19 và (17;19)=1(17;19)=1 nên ta cần chứng minh 20n−1+16n−3n20n−1+16n−3n chia hết cho số 1717 và 1919

Ta có 

20n−1⋮(20−1)=19;16n−3n⋮(16+3)=1920n−1⋮(20−1)=19;16n−3n⋮(16+3)=19 (vì nn chẵn)          (∗)(∗)

Mặt khác

20n+16n−3n−1=20n−3n+16n−120n+16n−3n−1=20n−3n+16n−1 

và 20n−3n⋮(20−3)=17;16n−1⋮(16+1)=1720n−3n⋮(20−3)=17;16n−1⋮(16+1)=17                           (∗∗)(∗∗)

Từ (∗)(∗∗)(∗)(∗∗) ta suy ra đpcm

9 tháng 10 2019

Câu hỏi của Nghĩa Nguyễn - Toán lớp 9 - Học toán với OnlineMath

Ta phân tích biểu thức đã cho ra nhân tử :

A=n4−4n3−4n2+16nA=n4−4n3−4n2+16n

=[n4−4n3]−[4n2−16n]=n3(n−4)−4n(n−4)=[n4−4n3]−[4n2−16n]=n3(n−4)−4n(n−4)

=n(n−4)[n2−4]=n(n−2)(n+2)(n−4)=n(n−4)[n2−4]=n(n−2)(n+2)(n−4)

Vì n chẵn và lớn hơn 4 nên ta đặt n = 2k + 2 , trong đó k > 1 và biểu diễn theo k,ta có : A=(2k+2)(2k)(2k+4)(2k−2)A=(2k+2)(2k)(2k+4)(2k−2)

=16k(k−1)(k+1)(k+2)=16(k−1)(k)(k+1)(k+2)=16k(k−1)(k+1)(k+2)=16(k−1)(k)(k+1)(k+2)

Ta nhận thấy (k−1)(k)(k+1)(k+2)(k−1)(k)(k+1)(k+2)là tích của bốn số nguyên dương liên tiếp,tích này chia hết cho 2.3.4 = 24

Vậy tích A đã cho chia hết cho 16.2.3.4 = 384 => đpcm

13 tháng 9 2019

Ta phân tích biểu thức đã cho ra nhân tử :

\(A=n^4-4n^3-4n^2+16n\)

\(=\left[n^4-4n^3\right]-\left[4n^2-16n\right]=n^3(n-4)-4n(n-4)\)

\(=n(n-4)\left[n^2-4\right]=n(n-2)(n+2)(n-4)\)

Vì n chẵn và lớn hơn 4 nên ta đặt n = 2k + 2 , trong đó k > 1 và biểu diễn theo k,ta có : \(A=(2k+2)(2k)(2k+4)(2k-2)\)

\(=16k(k-1)(k+1)(k+2)=16(k-1)(k)(k+1)(k+2)\)

Ta nhận thấy \((k-1)(k)(k+1)(k+2)\)là tích của bốn số nguyên dương liên tiếp,tích này chia hết cho 2.3.4 = 24

Vậy tích A đã cho chia hết cho 16.2.3.4 = 384 => đpcm

30 tháng 11 2016

Mình làm gọn 1 xíu nhé

Ta có

\(x^4-4x^3-4x^2+16x=\left(x-4\right)\left(x-2\right)x\left(x+2\right)\)

Đây là tích của 4 số chẵn liên tiếp nên sẽ có 2 số chia hết cho 2, 1số chia hết cho 4, 1 số chia hết cho 8. Nên tích này chia hết cho 27.

Trong 3 số chẵn liên tiếp sẽ có 1 số chia hết cho 3

Vì 3 và 27 là nguyên tố cùng nhau nên

Tích chia hết cho 3.27 = 384

19 tháng 11 2016

Đặt \(n^2+16n+2011=k^2\left(k\in N\right)\)

\(< =>\left(n^2+16n+64\right)+1947=k^2\)

\(< =>\left(n+8\right)^2+1947=k^2< =>k^2-\left(n+8\right)^2=1947\)

\(< =>\left(k-n-8\right)\left(k+n+8\right)=1947\)

\(k-n-8< k+n+8\)

\(=>\left(k-n-8\right)\left(k+n+8\right)=1.1947=3.649=11.177\)

bn tự giải tiếp nhé,đến đây dễ rồi
 

19 tháng 11 2016

_bạn còn thiếu 1 trường hợp là 59 .33 nhé # CTV Hoàng Phúc

3 tháng 10 2021

\(\left(2\cdot8^n+n^3-16n+1\right)⋮3\)

Ta có \(2\cdot8^n+n^3-16n+1=2^{3n+1}+n\left(n-2\right)\left(n+2\right)+1\)

Vì \(2^{3n+1}⋮̸3;1⋮̸3\) nên \(2^{3n+1}+1⋮3;n\left(n-2\right)\left(n+2\right)⋮3\)

Ta thấy \(n;n-2;n+2\) là 3 số cách đều 2 nên tích của chúng chia hết cho 3

Vậy cần tìm n sao cho \(2^{3n+1}+1⋮3\)

Ta có \(1:3R2\) nên \(2^{3n+1}:3R2\)

Mà \(n< 200\Leftrightarrow2^{3n+1}< 2^{601}:3R2\)

Ta thấy với \(2^1;2^3;2^5;...\) đều chia 3 dư 2

Quy luật: 2 mũ lẻ chia 3 dư 2

\(\Rightarrow3n+1\in\left\{1;3;5;...;601\right\}\\ \Rightarrow n\in\left\{0;\dfrac{2}{3};\dfrac{4}{3};...;\dfrac{200}{3}\right\}\)

Mà \(n\in N\)

Vậy \(n=0\)

3 tháng 10 2021

\(1:3R2\) là j thế ạ

7 tháng 4 2019

n>4 nữa nha bạn

Ta có:\(A=n^4-4n^3-4n^2+16n\)

\(=\left(n^4-4n^3\right)-\left(4n^2-16n\right)\)

\(=n^3\left(n-4\right)-4n\left(n-4\right)\)

\(=\left(n-4\right)\left(n^3-4n\right)\)

\(=n\left(n-3\right)\left(n^2-4\right)\)

\(=n\left(n-2\right)\left(n+2\right)\left(n-4\right)\)

Do n là số chẵn và n>4 nên đặt  \(n=2k+2\left(k>1\right)\).

\(\Rightarrow A=\left(2k+2\right)\left(2k+4\right)\left(2k-2\right)2k\)

\(=16k\left(k-1\right)\left(k+1\right)\left(k+2\right)\)

\(=16\left(k-1\right)k\left(k+1\right)\left(k+2\right)\)

Do  \(\left(k-1\right)k\left(k+1\right)\left(k+2\right)\) là tích 4 số nguyên dương liên tiếp nên chúng chia hết cho 2.3.4=24

Vậy A chia hết cho 16*24=384(đpcm)