K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2017

1)Ta co A=52014-52013+...-5+1

=>5A=52015-52014+...+5

=>6A=52015+1

=>6A-1=52015

=>5n=52015

=>n=2015

 Ta có n^2(n+1)+2n(n+1) = n^3+3n^2+2n = n(n^2+3n+2) = n(n+1)(n+2) 
Ta thấy n, n+1, n+2 là ba số nguyên liên tiếp với n nguyên 
=> trong 3 số n, n+1, n+2 có một số chia hết cho 3, có ít nhất một số chia hết cho 2 
=> n(n+1)(n+2) chia hết cho 2*3 = 6 (vì ƯCLN(2;3)=1) 
Vậy ta được điều phải chứng minh

Có đúng không thì cũng ủng hộ nha

22 tháng 3 2016

Đúng tôi làm rồi

9 tháng 7 2017

Cách 1 :

Ta có : 3n + 4 chia hết cho  n - 1

=> 3n - 3 + 7  chia hết cho  n - 1

=> 3(n - 1) + 7 chia hết cho  n - 1

=> 7 chia hết cho  n - 1

=> n - 1 thuộc Ư(7) = {-7;-1;1;7}

Ta có bảng : 

n - 1-7-117
n-6028
9 tháng 7 2017

Cách 2 : 

Ta có :  \(\frac{3n+4}{n-1}=\frac{3n-3+7}{n-1}=\frac{3\left(n-1\right)}{n-1}+\frac{7}{n-1}=3+\frac{7}{n-1}\)

Để 3n + 4 chia hết cho n - 1 thì 7 chia hết cho n - 1

=> 7 chia hết cho  n - 1

=> n - 1 thuộc Ư(7) = {-7;-1;1;7}

Ta có bảng : 

n - 1-7-117
n-6028
 
12 tháng 1 2017

có ai TL k