Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Gọi d=ƯCLN(n+3;n+2)
=>n+3-n-2 chia hết cho d
=>1 chia hết cho d
=>d=1
=>n+2 và n+3 là hai số nguyên tố cùng nhau
b: Gọi d=ƯCLN(2n+3;3n+5)
=>6n+9-6n-10 chia hết cho d
=>-1 chia hết cho d
=>d=1
=>2n+3 và 3n+5là hai số nguyên tố cùng nhau
Lời giải:
a. Gọi $d$ là ƯCLN $(n+2, n+3)$
$\Rightarrow n+2\vdots d, n+3\vdots d$
$\Rightarrow (n+3)-(n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$
Vậy $ƯCLN(n+2, n+3)=1$ hay $n+2, n+3$ nguyên tố cùng nhau.
b.
Gọi $d$ là ƯCLN $(2n+3, 3n+5)$
$\Rightarrow 2n+3\vdots d$ và $3b+5\vdots d$
$\Rightarrow 2(3n+5)-3(2n+3)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(2n+3,3n+5)=1$ nên 2 số này nguyên tố cùng nhau.
\(a,\) Gọi \(d=ƯCLN\left(n+1;n+2\right)\)
\(\Rightarrow n+1⋮d;n+2⋮d\\ \Rightarrow n+2-n-1⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d=1\)
Vậy \(ƯCLN\left(n+1;n+2\right)=1\) hay n+1 và n+2 ntcn
\(b,\) Gọi \(d=ƯCLN\left(3n+10;3n+9\right)\)
\(\Rightarrow3n+10⋮d;3n+9⋮d\\ \Rightarrow3n+10-3n-9⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d=1\)
Vậy 3n+10 và 3n+9 ntcn
a: Gọi a là UCLN(3n+1;6n+3)
\(\Leftrightarrow\left\{{}\begin{matrix}6n+3⋮a\\6n+2⋮a\end{matrix}\right.\Leftrightarrow1⋮a\Leftrightarrow a=1\)
Vậy: 3n+1 và 6n+3 là hai số nguyên tố cùng nhau
b: Gọi a là UCLN(2n+1;6n+5)
\(\Leftrightarrow\left\{{}\begin{matrix}6n+5⋮a\\6n+3⋮a\end{matrix}\right.\Leftrightarrow2⋮a\)
mà 2n+1 là số lẻ
nên a=1
Vậy: 2n+1 và 6n+5 là hai số nguyên tố cùng nhau
Bài giải
a: Gọi a là UCLN(3n+1;6n+3)
⇔⎧⎨⎩6n+3⋮a6n+2⋮a⇔1⋮a⇔a=1⇔{6n+3⋮a6n+2⋮a⇔1⋮a⇔a=1
Vậy: 3n+1 và 6n+3 là hai số nguyên tố cùng nhau
b: Gọi a là UCLN(2n+1;6n+5)
⇔⎧⎨⎩6n+5⋮a6n+3⋮a⇔2⋮a⇔{6n+5⋮a6n+3⋮a⇔2⋮a
mà 2n+1 là số lẻ
nên a=1
Vậy: 2n+1 và 6n+5 là hai số nguyên tố cùng nhau
nêu những cặp số nguyên tố cùng nhau
a,(n+1)và(2n+3)
b,(2n+3)và(3n+5)
c,(12n+1)và(n+20)
d,(n+19)và(n+20)
a: \(d=UCLN\left(n+1;n+2\right)\)
\(\Leftrightarrow n+2-n-1⋮d\)
hay d=1
b: \(d=UCLN\left(2n+2;2n+3\right)\)
\(\Leftrightarrow2n+3-2n-2⋮d\)
hay d=1
a: Gọi d=ƯCLN(2n+2;2n+3)
=>2n+3-2n-2 chia hết cho d
=>1 chia hết cho d
=>d=1
=>2n+2 và 2n+3 là hai số nguyên tố cùng nhau
b: Gọi d=ƯCLN(2n+1;n+1)
=>2n+1 chia hết cho d và n+1 chia hết cho d
=>2n+2 chia hết cho d và 2n+1 chia hết cho d
=>2n+2-2n-1 chia hết cho d
=>1 chia hết cho d
=>d=1
=>ĐPCM