K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2019

xin định lí ta lét ạ :v

14 tháng 7 2019

Cách chứng minh định lý ta lét  : v

3 tháng 9 2019

Bạn tham khảo thêm tại đây :

Lý thuyết định lí ta-lét. định lí đảo và hệ quả của định lí ta-lét toán 8

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: Đề sai rồi bạn

Nếu cho song song =>Talet thuận

Nếu cho tỉ lệ =>Talet đảo

16 tháng 4 2022

tham khảo

Định lý Talet đảo sẽ được phát biểu như sau: Nếu một đường thẳng cắt hai cạnh của một tam giác và định ra trên hai cạnh này những đoạn thẳng tương ứng tỉ lệ thì đường thẳng đó song song với cạnh còn lại của tam giác. Lưu ý: Định lý vẫn đúng cho trường hợp đường thẳng cắt phần kéo dài hai cạnh của tam giác

16 tháng 4 2022

tham khảo

Định lý Talet đảo sẽ được phát biểu như sau: Nếu một đường thẳng cắt hai cạnh của một tam giác và định ra trên hai cạnh này những đoạn thẳng tương ứng tỉ lệ thì đường thẳng đó song song với cạnh còn lại của tam giác. Lưu ý: Định lý vẫn đúng cho trường hợp đường thẳng cắt phần kéo dài hai cạnh của tam giác

13 tháng 6 2017
  1. Gọi ABCD là tứ giác nội tiếp đường tròn.
  2. Trên cung nhỏ BC, ta có các góc nội tiếp ∠BAC = ∠BDC, và trên cung AB, ∠ADB = ∠ACB.
  3. Lấy 1 điểm K trên AC sao cho ∠ABK = ∠CBD;
    1. Từ ∠ABK + ∠CBK = ∠ABC = ∠CBD + ∠ABD, suy ra ∠CBK = ∠ABD.
  4. Do vậy tam giác △ABK đồng dạng với tam giác △DBC, và tương tự có △ABD ∼ △KBC.
  5. Suy ra: AK/AB = CD/BD, và CK/BC = DA/BD;
    1. Từ đó AK·BD = AB·CD, và CK·BD = BC·DA;
    2. Cộng các vế của 2 đẳng thức trên: AK·BD + CK·BD = AB·CD + BC·DA;
    3. Hay: (AK+CK)·BD = AB·CD + BC·DA;
    4. Mà AK+CK = AC, nên AC·BD = AB·CD + BC·DA; (điều phải chứng minh)
14 tháng 6 2017

Cách này ko phải lớp 8

27 tháng 2 2018

Chỉ cần dựa trên định lý Ta lét là được

Từ C kẻ đường thẳng song song với AB cắt AD, BE ở K và H

\(\Rightarrow\frac{AF}{FB}.\frac{BD}{CD}.\frac{CE}{EA}=\frac{AB}{CK}.\frac{AF}{FB}.\frac{CH}{AB}\)

\(\Rightarrow\frac{FB}{CH}.\frac{AB}{FB}.\frac{CH}{AB}=1\)

Chứng minh theo lớp 8 rồi nhé

8 tháng 6 2018

Định lý Ta-lét:

Nếu một dường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại của nó định ra trên hai cạnh ấy những đoạn thẳng tương ứng tỉ lệ.

-Chúc bạn học tốt.

8 tháng 6 2018

 định lí ta-lét?

TL:

Định nghĩa : Tỉ số của hai đoạn thẳng là tỉ số độ dài của chúng theo cùng một đơn vị đo.