K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2017
  1. Gọi ABCD là tứ giác nội tiếp đường tròn.
  2. Trên cung nhỏ BC, ta có các góc nội tiếp ∠BAC = ∠BDC, và trên cung AB, ∠ADB = ∠ACB.
  3. Lấy 1 điểm K trên AC sao cho ∠ABK = ∠CBD;
    1. Từ ∠ABK + ∠CBK = ∠ABC = ∠CBD + ∠ABD, suy ra ∠CBK = ∠ABD.
  4. Do vậy tam giác △ABK đồng dạng với tam giác △DBC, và tương tự có △ABD ∼ △KBC.
  5. Suy ra: AK/AB = CD/BD, và CK/BC = DA/BD;
    1. Từ đó AK·BD = AB·CD, và CK·BD = BC·DA;
    2. Cộng các vế của 2 đẳng thức trên: AK·BD + CK·BD = AB·CD + BC·DA;
    3. Hay: (AK+CK)·BD = AB·CD + BC·DA;
    4. Mà AK+CK = AC, nên AC·BD = AB·CD + BC·DA; (điều phải chứng minh)
14 tháng 6 2017

Cách này ko phải lớp 8

27 tháng 2 2018

Chỉ cần dựa trên định lý Ta lét là được

Từ C kẻ đường thẳng song song với AB cắt AD, BE ở K và H

\(\Rightarrow\frac{AF}{FB}.\frac{BD}{CD}.\frac{CE}{EA}=\frac{AB}{CK}.\frac{AF}{FB}.\frac{CH}{AB}\)

\(\Rightarrow\frac{FB}{CH}.\frac{AB}{FB}.\frac{CH}{AB}=1\)

Chứng minh theo lớp 8 rồi nhé

9 tháng 3 2017

chưa học tới 

9 tháng 3 2017

Tu kehinh nhe

Vitamgiac ABCdong đáng với tam giác A'B'C' gocB=goc B'  1

Ma gocH=gocH' 2

Tu 1va 2 suy ra

Tam giac ABHdongdang voitam giacA'B'H'

suy ra AH/A'H'=AB/A'B'=k

14 tháng 6 2016

A B C D O

Áp dụng bất đẳng thức về cạnh : 

  • Trong tam giác  OAB :  \(AB< OA+OB\left(1\right)\) 
  • Trong tam giác OCD : \(CD< OC+OD\left(2\right)\)

Cộng (1) và (2) theo vế được : \(AB+CD< OA+OB+OC+OD=AC+BD\)

\(\Rightarrow AB+CD< AC+BD\left(\text{*}\right)\)

Tương tự, ta áp dụng bất đẳng thức về cạnh trong các tam giác ABC ,  ACD , ABD , BDC  được  : 

  •  \(\hept{\begin{cases}AC< AB+BC\left(3\right)\\AC< AD+DC\left(4\right)\end{cases}}\)
  • \(\hept{\begin{cases}BD< AD+AB\left(5\right)\\BD< CD+BC\left(6\right)\end{cases}}\)

Cộng  (3) , (4) , (5) , (6)  theo vế được :

\(2\left(AC+BD\right)< 2\left(AB+BC+CD+AD\right)\Rightarrow AC+BD< AB+BC+CD+AD\left(\text{*}\text{*}\right)\)

Từ (*) và (**) ta được điều phải chứng minh. 

10 tháng 8 2016

 AE = AD; AD = BC nên AE = BC(1) 
DC = AB; DC = CF nên AB = CF (2) 
GÓC EAB = BCF (Đồng vị) (3) 
Từ (1); (2); (3) -> tgiac EAB = BCF (cgc) -> EB = BF (*) 
Mặt khác: GÓC EBA = EFD (đồng vị); ABC = ADC (gt); CBF = AEB (đồng vị) 
Cộng vế với vế: EBA + ABC + CBF = EFD + ADC + AEB 
Mà EFD + ADC + AEB = 180 độ -> EBA + ABC + CBF = 180 độ (**) 
Từ (*); (**) suy ra điểm E đối xứng với điểm F qua điểm B.

19 tháng 10 2017

jhnjjg

28 tháng 12 2020
Học ngu thì đừng nói

Xin chém:(ko cần Đi-rích-lê nhưng cũng gần giống) 
Gọi 39 số liên tiếp đó là x1;x2;x3;...;x39x1;x2;x3;...;x39 và xi=xi−1+1xi=xi−1+1 với 2⩽xi⩽392⩽xi⩽39
Trong 39 số đó chắc chắn tồn tại 1 số nhỏ nhất chia hết cho 10 và 39 số đó đều khác 0.
Gọi số nhỏ nhất chia hết cho 10 đó là xjxj và j⩽10j⩽10
Vậy có ít nhất 29 số lớn hơn xjxj.
Gọi tổng các chữ số của xjxj là a
Xét 11 số xj;xj+1;xj+2;...;xj+9;xj+19;xj+29xj;xj+1;xj+2;...;xj+9;xj+19;xj+29 có tổng các chữ số lần lượt là a;a+1;a+2;...;a+9;a+10;a+11
Vì đó là 11 số liên tiếp nên tồn tại 1 số trong dãy a;a+1;a+2;...;a+9;a+10;a+11 chia hết cho 11
Vậy ta có đpcm 

8 tháng 1 2018

A B C D E M N O

Vẽ hình thang ABCD (AB//CD), giao điểm của AD và BC là E, giao điểm của AC và BD là O; M, N lần lượt là trung điểm của AB và DC.

Ta cần chứng minh E, M, O, N cùng thuộc một đường thẳng.

Gọi N' là giao điểm của EM với DC.

Do AB// CD nên áp dụng định lý Ta let cho các tam giác EDN' và EN'C , ta có:

\(\frac{AM}{DN'}=\frac{EM}{EN'}=\frac{BM}{N'C}\)

Lại có AM = BM nên DN' = N'C hay N' là trung điểm DC.

Suy ra N' trùng N hay E, M, N thẳng hàng.

Gọi N'' là giao điểm của MO với CD.

Do AB// CD nên áp dụng hệ quả định lý Ta let, ta có :

\(\frac{AM}{N''C}=\frac{MO}{ON''}=\frac{MB}{DN''}\)

\(\Rightarrow N''C=DN''\) hay N'' trùng N.

Vậy nên E, M, O, N thẳng hàng.

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

Lời giải:
Áp dụng BĐT Cô-si:

$(a+b+c)(ab+bc+ac)\geq 9abc$

$\Rightarrow abc\leq \frac{1}{9}(a+b+c)(ab+bc+ac)$. Do đó:

$(a+b)(b+c)(c+a)=(ab+bc+ac)(a+b+c)-abc$

$\geq (ab+bc+ac)(a+b+c)-\frac{(ab+bc+ac)(a+b+c)}{9}=\frac{8}{9}(a+b+c)(ab+bc+ac)$

$\Rightarrow (a+b+c)(ab+bc+ac)\leq \frac{9}{8}(*)$

Mà cũng theo BĐT Cô-si:

$1=(a+b)(b+c)(c+a)\leq \left(\frac{a+b+b+c+c+a}{3}\right)^3$

$\Rightarrow a+b+c\geq \frac{3}{2}(**)$

Từ $(*); (**)\Rightarrow ab+bc+ac\leq \frac{9}{8}.\frac{1}{a+b+c}\leq \frac{9}{8}.\frac{2}{3}=\frac{3}{4}$ (đpcm)

Dấu "=" xảy ra khi $a=b=c=\frac{1}{2}$