Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`\text {GT | Cho đoạn thẳng BC, I là trung điểm của BC. Trên trung trực của BC lấy A (A} \ne \text {I)}`
`\text {KL |} \Delta AIB = \Delta AIC}`
GT | ΔABC vuông tại A, BD là phân giác. DE vuông góc BC tại E AB giao DE=F |
KL | BD là trung trực của AE |
a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
góc ABE=góc HBE
=>ΔBAE=ΔBHE
b: BA=BH
EA=EH
=>BE là trung trực của AH
c: AE=EH
EH<EC
=>AE<EC
a: Xét ΔOAH vuông tại A và ΔOBH vuông tại B có
OH chung
\(\widehat{AOH}=\widehat{BOH}\)
Do đó: ΔOAH=ΔOBH
Suy ra: OA=OB; AH=BH
b: Xét ΔBHE vuông tại B và ΔAHM vuông tại A có
HB=HA
\(\widehat{BHE}=\widehat{AHM}\)
Do đó: ΔBHE=ΔAHM
Suy ra: HE=HM
c: Ta có: OM=OE
nên O nằm trên đường trung trực của ME(1)
Ta có: HE=HM
nên H nằm trên đường trung trực của ME(2)
Từ (1) và (2) suy ra OH là đường trung trực của ME
Câu 3:
a: \(BD=\sqrt{BC^2-DC^2}=4\left(cm\right)\)
b: \(\widehat{A}=180^0-2\cdot70^0=40^0< \widehat{B}\)
nên BC<AC=AB
c: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó:ΔEBC=ΔDCB
d: Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)
nên ΔOBC cân tại O
Câu 2
a) Thay y = -2 vào biểu thức đã cho ta được:
2.(-2) + 3 = -1
Vậy giá trị của biểu thức đã cho tại y = -2 là -1
b) Thay x = -5 vào biểu thức đã cho ta được:
2.[(-5)² - 5] = 2.(25 - 5) = 2.20 = 40
Vậy giá trị của biểu thức đã cho tại x = -5 là 40
a) ∆ ABC cân tại A (gt). \(\Rightarrow\) AB = AC (Tính chất tam giác cân).
Mà AB = BM (gt).
\(\Rightarrow\) AB = AC = BM.
Xét tứ giác ACMB:
BM = AC (cmt).
BM // AC (Bx // AC).
\(\Rightarrow\) Tứ giác ACBM là hình bình hành (dhnb).
Mà AB = BM (gt).
\(\Rightarrow\) Tứ giác ACBM là hình thoi (dhnb).
\(\Rightarrow\) \(AM\perp BC\) (Tính chất hình thoi).
b) Xét ∆ MBC:
MB = MC (Tứ giác ACBM là hình thoi).
\(\Rightarrow\) ∆ MBC cân tại M.
a) Ta có: \(\widehat{BEC}\) là góc ngoài tại đỉnh E của ΔABE
nên \(\widehat{BEC}=\widehat{A}+\widehat{ABE}=90^0+\widehat{ABE}>90^0\)
hay \(\widehat{BEC}\) là góc tù
b) \(\widehat{BEA}=180^0-110^0=70^0\)
\(\Leftrightarrow\widehat{ABE}=20^0\)
\(\Leftrightarrow\widehat{ABC}=40^0\)
\(\Leftrightarrow\widehat{ACB}=50^0\)
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
=>ΔABM=ΔACM
b: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc BC