\(M=a^2+3a+1\left(a\in N\right)\)
a) Chứng minh rằng Mọi ước của M đều là số lẻ<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2018

a) Giả sử ước của M là số chẵn thì \(M=2.k\Leftrightarrow a^2+3a+1=2k\)

Ta thấy \(a^2+3a+1=a\left(a+1\right)+2a+1\)

a(a + 1) là tích hai số tự nhiên liên tiếp nên chia hết cho 2. Vậy thì a(a + 1) + 2a chia hết cho 2.

Vì 2k chia hết cho 2, a(a + 1) + 2a cũng chia hết cho 2 nên 1 chia hết 2 (vô lý)

Vậy nên mọi ước của M đều là số lẻ.

b) Đặt \(a=5u+v\left(u\in N;0\le v\le4\right)\)

Khi đó \(M=\left(5u+v\right)^2+3\left(5u+v\right)+1\)

\(=25u^2+10uv+v^2+15u+3v+1\)

\(=\left(25u^2+10uv+15u\right)+v^2+3v+1\)

Để M chia hết 5 thì \(v^2+3v+1⋮5\)

Với \(0\le v\le4\), ta thấy chỉ có v = 4 là thỏa mãn.

Vậy \(a=5u+4\left(u\in N\right)\) 

c) Để M là lũy thừa của 5 thì \(a=5u+4\left(u\in N\right)\)

\(\Rightarrow M=\left(5u+4\right)^2+3\left(5u+4\right)+1\)

Với n chẵn, a có tận cùng là chữ số 4. Vậy thì M có tận cùng  là chữ số 9

Vậy không thể là lũy thừa của 5.

Với n lẻ, a có tận cùng là chữ số 9. Vậy thì M có tận cùng là chữ số 9

Vậy không thể là lũy thừa của 5.

Vậy không tồn tại số a để M là lũy thừa của 5.

2 tháng 1 2018

đây là đề thi tuyển sinh lớp 10 chuyên trường PTNK-ĐHQG-TP.Hồ Chí Minh(vòng 2) năm 2013-2014 ak

17 tháng 12 2022

a: Điểmmà (d) luôn đi qua có tọa độ là:

x+1=0 và y=5

=>x=-1 và y=5

PTHĐGĐ là:

1/2x^2-mx-m-5=0

=>x^2-2mx-2m-10=0

\(\text{Δ}=\left(-2m\right)^2-4\left(-2m-10\right)\)

\(=4m^2+8m+40=4m^2+8m+4+36=\left(2m+2\right)^2+36>0\)

=>(P) luôn cắt (d) tại hai điểm phân biệt

b: \(\left\{{}\begin{matrix}x_A+x_B=-2\\y_A+y_B=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_A+x_B=-2\\\dfrac{1}{2}\left(x_A^2+x_B^2\right)=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=-2\\x_1^2+x_2^2=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=-2\\\left(x_1+x_2\right)^2-2x_1x_2=20\end{matrix}\right.\)

=>x1+x2=-2 và 2x1x2=4-20=-16

=>x1+x2=-2 và x1x2=-8

=>x1,x2 là nghiệm của pt:

x^2+2x-8=0

=>(x+4)(x-2)=0

=>x=-4 hoặc x=2

=>A(-4;8); B(2;2)

7 tháng 4 2018

bạn làm được bài này chưa cho mình xin lời giải

Chào mọi người! Em vừa thi tuyển sinh 10 xong và dưới đây là đề tuyển sinh Toán của trường em vào, mong mọi người giúp em giải với ạ! Em cảm ơn rất nhiều ạ! Câu 1: (2,0 điểm) 1. Giải các phương trình sau: a) \(5\left(x+1\right)=3x+7\) ; b) \(x^4-x^2-12=0\) 2. Cho hệ phương trình: \(\left\{{}\begin{matrix}3x-y=2m-1\\x+2y=3m+2\end{matrix}\right.\) a) Giải hệ phương trình khi m =1. b) Tìm m để hệ có nghiệm...
Đọc tiếp

Chào mọi người! Em vừa thi tuyển sinh 10 xong và dưới đây là đề tuyển sinh Toán của trường em vào, mong mọi người giúp em giải với ạ!
Em cảm ơn rất nhiều ạ!
Câu 1: (2,0 điểm)
1. Giải các phương trình sau:
a) \(5\left(x+1\right)=3x+7\) ; b) \(x^4-x^2-12=0\)

2. Cho hệ phương trình: \(\left\{{}\begin{matrix}3x-y=2m-1\\x+2y=3m+2\end{matrix}\right.\)
a) Giải hệ phương trình khi m =1.
b) Tìm m để hệ có nghiệm (x;y) thoả mãn: \(x^2+y^2=10\).
Câu 2: (1,5 điểm) Cho biểu thức: \(A=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\) (với \(x>0;x\ne1\))
a) Rút gọn biểu thức A.
b) Tìm giá trị lớn nhất của biểu thức: \(P=A-9\sqrt{x}\)
Câu 3: (1,0 điểm) Một chiếc bè trôi từ bến sông A đến bến B với vận tốc dòng nước là 4 km/h, cùng lúc đó một chiếc thuyền chạy từ bến A đến B rồi quay lại ngay thì gặp chiếc bè tại vị trí C cách bến A là 8 km. Tính vận tốc thực của thuyền biết khoảng cách giữa hai bến A và B là 24 km.
Câu 4: (1,5 điểm) Trong hệ toạ độ Oxy, cho Parabol (P) : \(y=x^2\) và đường thẳng (d) có phương trình: \(y=\left(m-1\right)x+m^2-2m+3\)
a) Chứng minh với mọi giá trị của m thì (d) luôn cắt (P) tại hai điểm phân biệt.
b) Giả sử (d) cắt (P) tại hai điểm phân biệt A, B. Tìm m để tam giác OAB cân tại O. Khi đó tính diện tích tam giác OAB.
Câu 5: (3,0 điểm) Cho nửa đường tròn tâm O đường kính AB, M là một điểm bất kì thuộc đường tròn \(\left(M\ne A,B\right)\) . Tiếp tuyến tại M cắt các tiếp tuyến Ax và By của nửa đường tròn đó tại C và D.
a) Chứng minh: \(\widehat{COD}=90^o\)
b) Gọi K là giao điểm của BM với Ax. Chứng minh: \(\Delta KMO\sim\Delta AMD\)
c) Tìm giá trị nhỏ nhất của tổng diện tích hai tam giác ACM và BDM.
Câu 6: (1,0 điểm)
a) Cho hàm số: \(y=f\left(x\right)\) với \(f\left(x\right)\) là một biểu thức đại số xác định với mọi số thực \(x\ne0\). Biết rằng \(f\left(x\right)+3f\left(\dfrac{1}{x}\right)=x^2\left(\forall x\ne0\right)\). Tính \(f\left(2\right)\).
b) Cho ba số nguyên dương a, b, c đôi một khác nhau và thoả mãn: a là ước của b + c + bc, b là ước của c + a + ca và c là ước của a + b + ab. Chứng minh a, b, c không đồng thời là các số nguyên tố.

8
AH
Akai Haruma
Giáo viên
8 tháng 6 2018

Câu 6b:

Phản chứng. Giả sử $a,b,c$ đồng thời là các số nguyên tố (đường nhiên khác nhau)

Theo bài ra ta có:

\(\left\{\begin{matrix} a+b+ab\vdots c\\ b+c+bc\vdots a\\ c+a+ac\vdots b\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} a+b+c+ab+bc+ac\vdots c\\ a+b+c+ab+bc+ac\vdots a\\ a+b+c+ab+bc+ac\vdots b\end{matrix}\right.\)

Vì $a,b,c$ là các số nguyên tố khác nhau nên $(a,b,c)$ đôi một nguyên tố cùng nhau

Do đó:

\(a+b+c+ab+bc+ac\vdots abc\)

Đặt \(a+b+c+ab+bc+ac=kabc\) (\(k\in\mathbb{N}^*)\)

\(\Rightarrow k=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}(*)\)

Giả sử \(a=\min (a,b,c)\) Nếu $a=2$ thì $b,c$ sẽ là snt lẻ. Theo đề bài thì:\( b+c+bc\vdots 2\) (hoàn toàn vô lý do \(b+c+bc\) lẻ với $b,c$ lẻ)

Do đó \(\min (a,b,c)>2(**)\)

Từ \((*);(**)\Rightarrow k\leq \frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{3.7}< 1\) (vl vì $k$ là số nguyên dương)

Vậy điều giả sử hoàn toàn vl

Tức là $a,b,c$ không thể đồng thời là các số nguyên tố (đpcm)

P/s: Đây là đề tỉnh nào đây bạn? Bạn làm bài tốt chứ :)

8 tháng 6 2018

Đây là đề tỉnh Điện Biên ạ!
Còn phần bài thi thì em làm hết khả năng rồi, mặc dù em nghĩ ko ổn mấy đâu ạ!
Em cảm ơn thầy ( cô ) ạ!

24 tháng 8 2015

a) Vì \(\frac{1}{\sqrt{m-1}}\) > 0 với mọi m > 1 nên \(\frac{1}{\sqrt{m-1}}+1\ne0\) với mọi m > 1 

=> Với m > 1 thì Hàm số đã cho là hàm số bậc nhất

b) \(y=-\frac{m^2-2}{m+1}x+\frac{5\left(m^2-2\right)}{m+1}\)

Để hàm số đã cho là hàm bậc nhất <=> \(\frac{m^2-2}{m+1}\ne0\) <=> \(m^2-2\ne0;m+1\ne0\)

<=> \(m\ne\sqrt{2};-\sqrt{2};-1\)

Vậy với \(m\ne\sqrt{2};-\sqrt{2};-1\) thì hs đã cho là hs bậc nhất