K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2022

a: Điểmmà (d) luôn đi qua có tọa độ là:

x+1=0 và y=5

=>x=-1 và y=5

PTHĐGĐ là:

1/2x^2-mx-m-5=0

=>x^2-2mx-2m-10=0

\(\text{Δ}=\left(-2m\right)^2-4\left(-2m-10\right)\)

\(=4m^2+8m+40=4m^2+8m+4+36=\left(2m+2\right)^2+36>0\)

=>(P) luôn cắt (d) tại hai điểm phân biệt

b: \(\left\{{}\begin{matrix}x_A+x_B=-2\\y_A+y_B=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_A+x_B=-2\\\dfrac{1}{2}\left(x_A^2+x_B^2\right)=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=-2\\x_1^2+x_2^2=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=-2\\\left(x_1+x_2\right)^2-2x_1x_2=20\end{matrix}\right.\)

=>x1+x2=-2 và 2x1x2=4-20=-16

=>x1+x2=-2 và x1x2=-8

=>x1,x2 là nghiệm của pt:

x^2+2x-8=0

=>(x+4)(x-2)=0

=>x=-4 hoặc x=2

=>A(-4;8); B(2;2)

1 tháng 3 2022

???

1 tháng 3 2022

what?

7 tháng 11 2017

Bài 3 làm sao v ạ?

a: Thay x=-1 và y=3 vào (d), ta được:

-2-m+1=3

=>-1-m=3

=>m=-4

b: PTHĐGĐ là;

1/2x^2-2x+m-1=0

=>x^2-4x+2m-2=0

Δ=(-4)^2-4(2m-2)

=16-8m+8=-8m+24

Để (d) cắt (P) tại hai điểm phân biệt thì -8m+24>0

=>m<3

x1x2(y1+y2)+48=0

=>x1x2(x1^2+x2^2)+48=0

=>(2m-2)[4^2-2(2m-2)]+48=0

=>(2m-2)(16-4m+4)+48=0

=>(2m-2)*(20-4m)+48=0

=>40m-8m^2-40+8m+48=0

=>-8m^2+48m+8=0

=>m=3+căn 10 hoặc m=3-căn 10

8 tháng 4 2022

aPt hoành độ giao điểm là x2=mx+1

<=>x2-mx-1=0

\(_{\Delta}\)=m2-4(-1)=m2+4\(\ge0\)\(\forall m\inℝ\)

=>đpcm

b viet=>x1x2=-1 => A và B nằm ở hai hướng khác nhau

tính (d) giao trục OY tại K

=>Soab=(OK.x1+OK.x2)/2 sau đó tính ra

a: Khi m=2 thì \(y=-3x+2^2=-3x+4\)

Phương trình hoành độ giao điểm là:

\(x^2=-3x+4\)

=>\(x^2+3x-4=0\)

=>(x+4)(x-1)=0

=>\(\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=-4\\x=1\end{matrix}\right.\)

Thay x=-4 vào (P), ta được:

\(y=\left(-4\right)^2=16\)

Thay x=1 vào (P), ta được:

\(y=1^2=1\)

Vậy: (d) cắt (P) tại A(-4;16) và B(1;1)

b: Phương trình hoành độ giao điểm là:

\(x^2=-3x+m^2\)

=>\(x^2+3x-m^2=0\)

\(\text{Δ}=3^2-4\cdot1\cdot\left(-m^2\right)=4m^2+9>=9>0\forall m\)

=>(d) luôn cắt (P) tại hai điểm phân biệt

Trên cùng một mặt phẳng tọa độ Oxy cho hai đường thẳng (d) và (D) lần lượt có phương trình là y=2x-5 và y= (m-2)x -m-1 (m là tham số).a) Chứng minh rằng đường thẳng (D) luôn luôn đi qua một điểm cố định thuộc đường thẳng (d) với mọi giá trị của m∈R.b) Tìm giá trị của m để gốc tọa độ O cách đường thẳng (D) một khoảng lớn nhất. Câu 4: (4,0 điểm)Cho đường tròn (O; R) và hai...
Đọc tiếp

Trên cùng một mặt phẳng tọa độ Oxy cho hai đường thẳng (d) và (D) lần lượt có phương trình là y=2x-5 và y= (m-2)x -m-1 (m là tham số).
a) Chứng minh rằng đường thẳng (D) luôn luôn đi qua một điểm cố định thuộc đường thẳng (d) với mọi giá trị của m∈R.
b) Tìm giá trị của m để gốc tọa độ O cách đường thẳng (D) một khoảng lớn nhất. 
Câu 4: (4,0 điểm)
Cho đường tròn (O; R) và hai đường kính phân biệt AB và CD sao cho tiếp tuyến tại A của đường tròn (O; R) cắt các đường thẳng BC và BD lần lượt tại hai điểm E và F. Gọi P và Q lần lượt là trung điểm của các đoạn thẳng AE và AF.
a) Chứng minh rằng trực tâm H của tam giác BPQ là trung điểm của đoạn thẳng OA.
b) Hai đường kính AB và CD có vị trí tương đối như thế nào thì tam giác BPQ có diện tích nhỏ nhất.
Câu 5: (2,0 điểm) Cho a, b, c là các độ dài ba cạnh của một tam giác và thỏa hệ thức a+b+c=1. Chứng minh rằng a2+b2+c2<12.

0

a: Thay x=1 và y=3 vào (d), ta được:

m+3-m=3

=>3=3(luôn đúng)

b: PTHĐGĐ là:

x^2-mx-3+m=0

=>x^2-mx+m-3=0

Để (d) cắt (P) tại hai điểm phân biệt thì m-3<0

=>m<3

NV
15 tháng 12 2020

a.

Giả sử điểm cố định mà (d) đi qua có tọa độ \(M\left(x_0;y_0\right)\)

Với mọi m, ta có:

\(y_0=\left(m+2\right)x_0+m\)

\(\Leftrightarrow m\left(x_0+1\right)+2x_0-y_0=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0+1=0\\2x_0-y_0=0\end{matrix}\right.\) \(\Rightarrow M\left(-1;-2\right)\)

b. Để (d) cắt 2 trục tạo thành tam giác thì \(m\ne\left\{0;-2\right\}\)

Khi đó ta có: \(\left\{{}\begin{matrix}A\left(-\dfrac{m}{m+2};0\right)\\B\left(0;m\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}OA=\left|\dfrac{m}{m+2}\right|\\OB=\left|m\right|\end{matrix}\right.\)

\(S_{OAB}=\dfrac{1}{2}OA.OB=\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{m^2}{\left|m+2\right|}=1\)

\(\Leftrightarrow\left[{}\begin{matrix}m^2=m+2\\m^2=-m-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=2\end{matrix}\right.\)

a: (d)'//(d) nên (d'): y=-3x+b

Thay x=1 và y=2 vào (d'), ta được:

b-3=2

=>b=5

=>y=-3x+5

b: PTHĐGĐ là;

mx^2+3x-1=0

Để (d) cắt (P) tại hai điểm phân biệt nằm về cùng một phía so với trục tung thì

(-3)^2-4*m*(-1)>0 và -1/m>0

=>m<0 và 9+4m>0

=>m<0 và m>-9/4

=>-9/4<m<0