Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(A=\left(1+\frac{1}{3}+...+\frac{1}{9}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{9}+\frac{1}{10}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{9}+\frac{1}{10}\right)-\left(1+\frac{1}{2}+...+\frac{1}{5}\right)\)
\(A=\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+...+\frac{1}{10}\)
\(B=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\)
\(B=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{5}\right)\)
Vậy A = B và A = 1/6 + 1/7 + 1/8 + 1/9 + 1/10
1/ A= \(\left(\frac{1}{1.2}\right)+\left(\frac{1}{3.4}\right)+...+\left(\frac{1}{9.10}\right)\)
B=(1/1+1/2+1/3+...+1/10)- (1/1+1/2+...+1/5)
<=> B=1/6+1/7+1/8+1/9+1/10.
M=102009+2/102009-1=102009-1+3/102009-1=1+3/102009-1
N=102009/102009-3=102009-3+3/102009-3=1+3/102009-3
vì 102009-1>102009-3
=>m<n
a) - Xét trường hợp chia hết cho 2
+ Vì n và n + 1 là hai số liên tiếp nên n.(n+1).(2n+1) chia hết cho 2.
- Xét trường hợp chia hết cho 3.
+ Nếu n chia hết cho 3 thì n.(n+1).(2n+1) chia hết cho 3
+ Nếu n chia 3 dư 1 thì 2n + 1 chia hết cho 3 => n.(n+1).(2n+1) chia hết cho 3.
+ Nếu n chia 3 dư 2 thì n + 1 chia hết cho 3 => n.(n+1).(2n+1) chia hết cho 3.
Vậy n.(n+1).(2n+1) chia hết cho 2.
Mà n.(n+1).(2n+1) chia hết cho 3 và 2 => n.(n+1).(2n+1) chia hết cho 6 (đpcm)
b) 10^9 + 2 = 100.....02.
Tổng các chữ số của số trên là: 1 + 0 + 0 + 0 +... + 0 + 2 = 3 => 10^9+2 chia hết cho 3(đpcm)
c) 10^10 - 1 = 99...99
Vì các chữ số của số trên đều là 9 => Nó chia hết cho 9 => 10^10 - 1 chia hết cho 9 (đpcm)
d) 10^8 - 1 = 99...9
Vì các chữ số của số trên đều là 9 => Nó chia hết cho 9 => 10^10 - 1 chia hết cho 9 (đpcm)
E) 10^8 + 8 = 10...08
Tổng các chữ số của số trên là: 1 + 0 + 0 +... + 0 + 8 = 9 => Nó chia hết cho 9 => 10^8 + 8 chia hết cho 9 (đpcm)
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{9}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{9}+\frac{1}{10}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}-1-\frac{1}{2}-...-\frac{1}{5}\)
\(=\frac{1}{6}+\frac{1}{7}+...+\frac{1}{10}\left(đpcm\right)\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\)\(\frac{1}{10}\)
\(A=\frac{1}{1}+\frac{1}{3}+...+\frac{1}{9}-\frac{1}{2}-\frac{1}{4}-...-\frac{1}{10}\)
\(A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{9}+\frac{1}{10}-2.\frac{1}{2}-2.\frac{1}{4}-...-2.\frac{1}{10}\)
\(A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{9}+\frac{1}{10}-1-\frac{1}{2}-...-\frac{1}{5}\)
\(A=\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}\left(đpcm\right)\)
~~~Hok tốt~~~
Xét tử của số bị trừ ta có 102008+2=100...0+2=100...002(có 2007 chữ số 0)
Mà 1+0+0+...+0+0+2=3\(⋮\)3(có 2007 chữ số 0)
=>Phân số \(\frac{10^{2008}+2}{3}\) là 1 số nguyên(1)
Xét tử của số trừ ta có 102009+17=100...0+17=100...0017(có 2007 chữ số 0)
Mà 1+0+0+...+0+0+1+7=9\(⋮\)9(có 2007 chữ số 0)
=>Phân số \(\frac{10^{2009}+17}{9}\) là 1 số nguyên(2)
Từ (1) và (2)=>\(\frac{10^{2008}+2}{3}\)-\(\frac{10^{2009}+17}{9}\) là 1 số nguyên
Mình làm hơi tắt đáng lẽ từ dòng thứ 2 và 6 cậu phải suy ra 2 tử trên \(⋮\)3,9
a, Vì A có 3 chữ số tận cùng là 008 => A chia hết cho 8 (1)
A có tổng các chữ số là 12 chia hết cho 3 (2)
Từ (1) và (2) với (3,8)=1 => A chia hết cho 24
b, Vì A có chữ số tận cùng là 8 nên A không phải là số chính phương.
\(10M=1+\frac{1}{10}+\frac{1}{10^2}+...+\frac{1}{10^{2008}}\)
\(9M=10M-M=1-\frac{1}{10^{2009}}\Rightarrow M=\frac{1}{9}-\frac{1}{9.10^{2009}}< \frac{1}{9}\)