Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2: n= 12
Do A=\(\frac{\left(2x2\right)^6x\left(2x3\right)^6}{3^6x2^6}=2^{12}\)
câu 5 :vì đồ thị của hàm số y =ax (a khác 0) là 1 đường thẵng đi qua góc toạ độ nên 3 điểm o,m,m là 1 đường thẳng ,k nha
Ta có: \(n^5-5n^3+4n^2\)
\(=n^2\left(n^3-5n+4\right)\)
\(=n^2\left(n^3-n-4n+4\right)\)
\(=n^2\cdot\left[n\left(n-1\right)\left(n+1\right)-4\left(n-1\right)\right]\)
\(=n^2\left(n-1\right)\left(n^2+n-4\right)⋮120\)
Bài 2:
a) Xét ΔAEF và ΔCED có
AE=CE(E là trung điểm của AC)
\(\widehat{AEF}=\widehat{CED}\)(hai góc đối đỉnh)
FE=DE(gt)
Do đó: ΔAEF=ΔCED(c-g-c)
⇒AF=DC(hai cạnh tương ứng)
b) Xét ΔAED và ΔCEF có
AE=CE(E là trung điểm của AC)
\(\widehat{AED}=\widehat{CEF}\)(hai góc đối đỉnh)
DE=FE(gt)
Do đó: ΔAED=ΔCEF(c-g-c)
⇒AD=CF(hai cạnh tương ứng) và \(\widehat{A}=\widehat{FCE}\)(hai góc tương ứng)
mà \(\widehat{A}\) và \(\widehat{FCE}\) là hai góc ở vị trí so le trong
nên AD//CF(dấu hiệu nhận biết hai đường thẳng song song)
hay BD//CF
Ta có: AD=CF(cmt)
mà AD=BD(D là trung điểm của AB)
nên DB=CF
Xét ΔDBC và ΔCFD có
DB=CF(cmt)
\(\widehat{BDC}=\widehat{FCD}\)(so le trong, DB//FC)
DC là cạnh chung
Do đó: ΔDBC=ΔCFD(c-g-c)
⇒BC=FD(hai cạnh tương ứng)
Ta có: DE=EF(gt)
mà E nằm giữa D và F
nên E là trung điểm của DF
Ta có: BC=FD(cmt)
mà \(DE=\frac{FD}{2}\)(E là trung điểm của DF)
nên \(DE=\frac{1}{2}\cdot BC\)(đpcm1)
Ta có: ΔDBC=ΔCFD(cmt)
⇒\(\widehat{BCD}=\widehat{FDC}\)(hai góc tương ứng)
mà \(\widehat{BCD}\) và \(\widehat{FDC}\) là hai góc ở vị trí so le trong
nên DF//BC(dấu hiệu nhận biết hai đường thẳng song song)
hay DE//BC(đpcm2)
3: Ta có: P(0)=2007
\(\Leftrightarrow a\cdot0+b=2007\)
hay b=2007
Ta có: P(1)=2006
⇔\(a+b=2006\)
hay a=2006-b=2006-2007=-1
Vậy: Đa thức P có dạng là -x+2007
5) 413+325-88 =(22)13+(25)5-(23)8 =226+225-224 =224(22+2-1) =224.5 chia hết cho 5
6) \(2006^{1000}+2006^{999}=2006^{999}.\left(2006+1\right)=2006^{999}.2007\) chia hêt cho 2007
5) \(4^{13}+32^5-8^8=2^{26}+2^{25}-2^{24}=2^{24}.4+2^{24}.2-2^{24}.1=2^{24}.\left(4+2-1\right)=2^{24}.5\)
6) \(2006^{1000}+2006^{999}=2006^{999}.2006+2006^{999}.1=2006^{999}\left(2006+1\right)=2006^{999}.2007\)