Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+\sqrt{x^2+\sqrt{2013}}\right)\left(x-\sqrt{x^2+\sqrt{2013}}\right)=x^2-x^2-\sqrt{2013}=-\sqrt{2013}\) (1)
Theo đề bài và (1) => dpcm
b) theo a có \(y+\sqrt{y^2+\sqrt{2013}}=-x+\sqrt{x^2+\sqrt{2013}}\)(2)
tương tự ta có \(x+\sqrt{x^2+\sqrt{2013}}=-y+\sqrt{y^2+\sqrt{2013}}\)(3)
Cộng 2 vế (2) với (3) => x+y = -x -y
hay 2(x+y) =0 =>S= x+y =0
Ta có:
\(\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)=2013\\ \Leftrightarrow\left(x^2-x^2-2013\right)\left(y+\sqrt{y^2+2013}\right)=2013\left(x-\sqrt{x^2+2013}\right)\\ \Leftrightarrow y+\sqrt{y^2+2013}=\sqrt{x^2+2013}-x\left(1\right)\)
Tương tự: \(x+\sqrt{x^2+2013}=\sqrt{y^2+2013}-y\left(2\right)\)
Do đó: 2x=-2y
Suy ra: x=-y
Do đó:
\(x^{2013}+y^{2013}=\left(-y\right)^{2013}+y^{2013}=0\left(ĐPCM\right)\)
pt <=> \(\left(\sqrt{x^2+2013}+x\right)\) . \(\left(\sqrt{x^2+2013}-x\right)\). \(\left(\sqrt{y^2+2013}+y\right)\)= 2013 . \(\left(\sqrt{x^2+2013}-x\right)\)
<=> 2013 . \(\left(\sqrt{y^2+2013}+y\right)\)= 2013 . \(\left(\sqrt{x^2+2013}-x\right)\)
<=> \(\sqrt{y^2+2013}+y\)= \(\sqrt{x^2+2013}-x\)
Tương tự : \(\sqrt{x^2+2013}+x\)= \(\sqrt{y^2+2013}-y\)
=> x=-y
=> x+y = 0
Tk mk nha
Dễ dàng nhận ra \(x-\sqrt{x^2+2013}\ne0\), nhân 2 vế với nó:
\(\Leftrightarrow-2013\left(y+\sqrt{y^2+2013}\right)=2013\left(x-\sqrt{x^2+2013}\right)\)
\(\Leftrightarrow y+\sqrt{y^2+2013}=\sqrt{x^2+2013}-x\)
Tương tự ta có \(x+\sqrt{x^2+2013}=\sqrt{y^2+2013}-y\)
Cộng vế với vế:
\(x+y+\sqrt{x^2+2013}+\sqrt{y^2+2013}=\sqrt{x^2+2013}+\sqrt{y^2+2013}-x-y\)
\(\Rightarrow2\left(x+y\right)=0\Rightarrow P=0\)
Chúng ta nhân biểu thức liên hợp
\(\left(x+\sqrt{x^2+2013}\right)\left(-x+\sqrt{x^2+2013}\right)=2013\left(1\right)\)
\(\left(y+\sqrt{y^2+2013}\right)\left(-y+\sqrt{y^2+2013}\right)=2013\left(2\right)\)
Nhân vế với vế của (1) và (2)
\(\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)\left(-x+\sqrt{x^2+2013}\right)\left(-y+\sqrt{y^2+2013}\right)=2013^2\)<=>\(2013.\left(-x+\sqrt{x^2+2013}\right)\left(-y+\sqrt{y^2+2013}\right)=2013^2\)
<=>\(\left(-x+\sqrt{x^2+2013}\right)\left(-y+\sqrt{y^2+2013}\right)=2013\)
Nhân ra
\(xy-y\sqrt{\left(x^2+2013\right)}-x\sqrt{y^2+2013}+\sqrt{\left(x^2+2013\right)\left(y^2+2013\right)}=2013\left(3\right)\)Từ biểu thức ban đầu cho ta có
\(xy+y\sqrt{x^2+2013}+x\sqrt{y^2+2013}+\sqrt{\left(x^2+2013\right)\left(y^2+2013\right)}=2013\left(4\right)\)Cộng 3 và 4 lại với nhau và bình phương 2 vế lên là ra bạn à
Ta có
\(\left(\sqrt{x^2+2013}+x\right)\left(\sqrt{x^2+2013}-x\right)=x^2+2013-x^2=2013\)
\(\left(\sqrt{y^2+2013}+y\right)\left(\sqrt{y^2+2013}-y\right)=y^2+2013-y^2=2013\)
Mà Theo đề Ra
=>\(y+\sqrt{y^2+2013}=\sqrt{x^2+2013}-x\)(*)
và \(x+\sqrt{x^2+2013}=\sqrt{y^2+2013}-y\)(**)
Cộng (*) với (**)
=>x+y = -x -y
hay x + y =0
=> A = x+y =0
Đặt \(\sqrt{\text{x}}-\sqrt{y}=a\); \(\sqrt{y}-\sqrt{z}=b\); \(\sqrt{z}-\sqrt{x}=c\)
\(\Rightarrow a+b+c=0\). Ta sẽ chứng minh : \(a^3+b^3+c^3=3abc\)
Ta có : \(a+b+c=0\Rightarrow a=-\left(b+c\right)\Rightarrow a^3=-\left(b+c\right)^3\)
\(\Rightarrow a^3=-\left[b^3+c^3+3bc\left(b+c\right)\right]\Rightarrow a^3+b^3+c^3=-3bc\left(-a\right)=3abc\)
Mặt khác, ta lại có : \(a^3+b^3+c^3=0\left(gt\right)\Rightarrow3abc=0\Rightarrow abc=0\)
\(\Rightarrow a=0\)hoặc \(b=0\)hoặc \(c=0\)
Tu do de dang giai tiep bai toan!
Ta có\(\left(x+\sqrt{x^2+2013}\right)\left(\sqrt{x^2+2013}-x\right)=x^2+2013-x^2=2013\)
Mà \(\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)=2013\)
\(\Rightarrow\sqrt{x^2+2013}-x=y+\sqrt{y^2+2013}\)(1)
Tương tự \(x+\sqrt{x^2+2013}=\sqrt{y^2+2013}-y\)(2)
Lấy (1) - (2) ta được -2x = 2y
<=> 2x + 2y = 0
<=> P = x + y = 0