K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 3 2021

Quy nạp 1 cách đơn giản, ta dễ dàng chứng minh dãy dương

Lại có: \(v_{n+1}=\dfrac{2v_n}{1+2018v_n^2}\le\dfrac{2v_n}{2\sqrt{1.2018v_n^2}}=\dfrac{1}{\sqrt{2018}}\)

\(\Rightarrow\) Dãy bị chặn trên bởi \(\dfrac{1}{\sqrt{2018}}\) hay \(v_n\le\dfrac{1}{\sqrt{2018}}\Leftrightarrow v_n^2\le\dfrac{1}{2018}\)  ; \(\forall n\ge1\)

\(\Leftrightarrow1-2018v_n^2\ge0\)

Ta có: \(v_{n+1}-v_n=\dfrac{2v_n}{1+2018v_n^2}-v_n=\dfrac{v_n-2018v_n^3}{1+2018v_n^2}=\dfrac{v_n\left(1-2018v_n^2\right)}{1+2018v_n^2}\ge0\)

\(\Rightarrow v_{n+1}\ge v_n\) (đpcm)

19 tháng 5 2017

Dãy số - cấp số cộng và cấp số nhân

Dãy số - cấp số cộng và cấp số nhân

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Ta có: \({u_{n + 1}} = 3\left( {n + 1} \right) - 1 = 3n + 2\).

Suy ra \({u_{n + 1}} > {u_n}\).

b) Ta có: \({v_{n + 1}} = \frac{1}{{{{\left( {n + 1} \right)}^2}}}\).

Suy ra: \({u_{n + 1}} < {u_n}\).

19 tháng 5 2017

Dãy số - cấp số cộng và cấp số nhân

Dãy số - cấp số cộng và cấp số nhân

26 tháng 5 2017

\(limu_n=lim\dfrac{1}{n}=0\); \(limv_n=lim\left(-\dfrac{1}{n}\right)=0\).
\(limf\left(u_n\right)=lim\left(\sqrt{\dfrac{1}{n}}+1\right)=1\).
\(limf\left(v_n\right)=lim\left(2.\dfrac{-1}{n}\right)=lim\dfrac{-2}{n}=0\).
Hai dãy số \(\left(u_n\right)\)\(\left(v_n\right)\) đều có giới hạn 0 khi n tiến ra dương vô cùng nhưng \(limf\left(u_n\right)\ne limf\left(v_n\right)\) nên f không có giới hạn tại \(x=0\).

Ta có: \(u_n>2020\) với mọi \(n\in N\text{*}\) \(\left(\text{*}\right)\)

Thật vậy, dễ thấy \(u_1=2021>2020\)

Giả sử \(\left(\text{*}\right)\) đúng với \(n=k\left(k\ge1\right)\)

\(\Rightarrow u_k>2020\)\(\Rightarrow u_{k+1}=\left[1-\dfrac{1}{\left(k+1\right)^2}\right]u_k+\dfrac{2020}{\left(k+1\right)^2}\)

\(>\left[1-\dfrac{1}{\left(k+1\right)^2}\right].2020+\dfrac{2020}{\left(k+1\right)^2}=2020\)

\(\Rightarrow\left(\text{*}\right)\) đúng với \(n=k+1\)

Do đó theo nguyên lý quy nạp ta có đpcm.

Lại có:

\(u_{n+1}-u_n=\dfrac{2020}{\left(n+1\right)^2}-\dfrac{u_n}{\left(n+1\right)^2}< 0\) với mọi \(n\in N\text{*}\)

\(\Rightarrow\left(u_n\right)\) là dãy giảm

\(\left(u_n\right)\) là dãy giảm và bị chặn nên \(\left(u_n\right)\) là dãy hội tụ

Đặt \(limu_n=L\)

\(\Rightarrow\left\{{}\begin{matrix}2020\le L\le2021\\L=\left[1-\dfrac{1}{\left(n+1\right)^2}\right].L+\dfrac{2020}{\left(n+1\right)^2}\end{matrix}\right.\)\(\Rightarrow L=2020\left(tm\right)\)

Vậy \(limu_n=2020\)

 

Ta có: \(u_n>2020\) với mọi \(n\in N\text{*}\) \(\left(\text{*}\right)\)

Thật vậy, dễ thấy \(u_1=2021>2020\)

Giả sử \(\left(\text{*}\right)\) đúng với \(n=k\left(k\ge1\right)\)

\(\Rightarrow u_k>2020\)\(\Rightarrow u_{k+1}=\left[1-\dfrac{1}{\left(k+1\right)^2}\right]u_k+\dfrac{2020}{\left(k+1\right)^2}\)

\(>\left[1-\dfrac{1}{\left(k+1\right)^2}\right].2020+\dfrac{2020}{\left(k+1\right)^2}=2020\)

\(\Rightarrow\left(\text{*}\right)\) đúng với \(n=k+1\)

Do đó theo nguyên lý quy nạp ta có đpcm.

Lại có:

\(u_{n+1}-u_n=\dfrac{2020}{\left(n+1\right)^2}-\dfrac{u_n}{\left(n+1\right)^2}< 0\) với mọi \(n\in N\text{*}\)

\(\Rightarrow\left(u_n\right)\) là dãy giảm

\(\left(u_n\right)\) là dãy giảm và bị chặn nên \(\left(u_n\right)\) là dãy hội tụ

Đặt \(limu_n=L\)

\(\Rightarrow\left\{{}\begin{matrix}2020\le L\le2021\\L=\left[1-\dfrac{1}{\left(n+1\right)^2}\right].L+\dfrac{2020}{\left(n+1\right)^2}\end{matrix}\right.\)\(\Rightarrow L=2020\left(tm\right)\)

Vậy \(limu_n=2020\)