Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT Bunhiacopkxy:
\((2a^2+b^2)(2a^2+c^2)=(a^2+a^2+b^2)(a^2+c^2+a^2)\geq (a^2+ac+ab)^2\)
\(=[a(a+b+c)]^2\)
\(\Rightarrow \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a^3}{[a(a+b+c)]^2}=\frac{a}{(a+b+c)^2}\)
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế thu được:
\(\sum \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a+b+c}{(a+b+c)^2}=\frac{1}{a+b+c}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
\(a,\) Đặt \(A=\left(a+b+c\right)^3-a^3-b^3-c^3\)
Với \(a=-b\) ta được \(A=0\)
Do vai trò bình đẳng của a,b,c và A bậc 3 nên nhân tử còn lại là hằng số k
Do đó \(A=k\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Cho \(a=b=c=1\Leftrightarrow3^3-1-1-1=8k\Leftrightarrow k=3\)
Do đó \(A=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(b,\) Đặt \(B=a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)\)
Với \(a=b\Leftrightarrow B=0\)
Do vai trò bình đẳng của a,b,c và B bậc 4 nên \(B=\left(a-b\right)\left(b-c\right)\left(c-a\right)Q\) trong đó Q bậc nhất
Do đó \(Q=\left(a+b+c\right)R\) với R là hằng số
\(\Leftrightarrow B=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)R\)
Cho \(a=1;b=2;c=3\Leftrightarrow-12=12R\Leftrightarrow R=-1\)
Do đó \(B=-\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)\)
\(c,\) Đặt \(C=\left(a+b+c\right)^5-a^5-b^5-c^5\)
Cho \(a=-b\Leftrightarrow C=0\)
Do vai trò bình đẳng của a,b,c và C bậc 5 nên \(C=\left(a+b\right)\left(b+c\right)\left(c+a\right)P\) trong đó P bậc 2
Do đó \(P=\left(a^2+b^2+c^2+ab+bc+ca\right)R\) với R là hằng số
\(\Leftrightarrow C=\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(a^2+b^2+c^2+ab+bc+ca\right)R\)
Cho \(a=1;b=2;c=3\Leftrightarrow7500=1500R\Leftrightarrow R=5\)
Do đó \(C=5\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(a^2+b^2+c^2+ab+bc+ca\right)\)
\(d,\) Đặt \(D=2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4\)
Với \(a=b+c\Leftrightarrow D=0\)
Do vai trò bình đẳng của a,b,c và D bậc 4 nên \(D=\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)R\) với R bậc nhất
Do đó \(R=\left(a+b+c\right)Q\) với Q là hằng số
\(\Leftrightarrow D=\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)\left(a+b+c\right)Q\)
Cho \(a=b=c=1\Leftrightarrow Q=1\)
Do đó \(D=\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)\left(a+b+c\right)\)
Đặt vế trái là P
\(P=\sum\frac{2\left(b+c-a\right)^2}{2a^2+\left(b+c\right)^2}\ge\sum\frac{2\left(b+c-a\right)^2}{2a^2+2\left(b^2+c^2\right)}=\frac{\left(b+c-a\right)^2+\left(c+a-b\right)^2+\left(a+b-c\right)^2}{a^2+b^2+c^2}\)
\(P\ge\frac{3\left(a^2+b^2+c^2\right)-2ab-2ac-2bc}{a^2+b^2+c^2}=\frac{a^2+b^2+c^2+\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{a^2+b^2+c^2}\)
\(P\ge\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
1/\(=4a^2+4b^2+c^2+8ab-4bc-4ca+4b^2+4c^2+a^2+8bc-4ca-4ab+4a^2+4c^2+b^2+8ca-4bc-4ab=\)
\(=9a^2+9b^2+9c^2=9\left(a^2+b^2+c^2\right)\)
2/
Ta có
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge0\)
\(\Leftrightarrow a^2+b^2+c^2\ge-2\left(ab+bc+ca\right)=2\)
\(\Rightarrow P=9\left(a^2+b^2+c^2\right)\ge18\)
\(\Rightarrow P_{min}=18\)
1a) a2 + b2 + c2 + 2ab + 2bc + 2ca + a2 + b2 + c2
= ( a2 + 2ab +b2 ) + ( a2 + 2ac + c2 ) + ( b2 + 2bc + c2 )
= ( a + b )2 + ( a + c )2 + ( b + c )2
1b) 2.( ac - ab - bc + b2 ) + 2.( bc - ba - ac + a2 ) + 2.( ba - bc - ca + c2 )
= 2ac - 2ab - 2bc + 2b2 + 2bc - 2ab - 2ac +2a2 + 2ab - 2bc - 2ac + 2c2
= 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc
= ( a2 - 2ab + b2 ) + (a2 - 2ac + c2 ) + (b2 - 2bc + c2 )
= (a-b)2 + (a-c)2 + (b-c)2
Không mất tính tổng quát ta giả sử \(a\ge b\ge c\)
Đặt \(\left\{{}\begin{matrix}a-b=x\\b-c=y\\a-c=z\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}z\ge x\ge0\\z\ge y\ge0\end{matrix}\right.\)
Ta có:
\(x^2+y^2+z^2=\left(x-y\right)^2+\left(x+z\right)^2+\left(y+z\right)^2\)
\(\Leftrightarrow x^2+y^2+z^2+2xz+2yz-2xy=0\)
\(\Leftrightarrow z^2+2xz+2yz+\left(x-y\right)^2=0\)
Vì \(\Rightarrow\left\{{}\begin{matrix}z\ge x\ge0\\z\ge y\ge0\end{matrix}\right.\)
\(\Rightarrow z^2+2xz+2yz+\left(x-y\right)^2\ge0\)
Dấu = xảy ra khi \(x=y=z=0\)
Hay \(a=b=c\)
\(VT=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)
\(=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2-4ab-4bc-4ca\)
\(VP=\left[\left(a+b\right)-2c\right]^2+\left[\left(b+c\right)-2a\right]^2+\left[\left(c+a\right)-2b\right]^2\)
\(=\left(a+b\right)^2-4\left(a+b\right)c+4c^2+\left(b+c\right)^2-4\left(b+c\right)a+4a^2+\left(a+c\right)^2-4\left(a+c\right)b+4b^2\)
\(=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2-4\left(a+b\right)c+4c^2-4\left(b+c\right)a+4a^2-4\left(a+c\right)b+4b^2\)
Nhìn vào thấy 2 vế có \(\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\) rút gọn luôn thì được
\(-4ab-4bc-4ca=-4\left(a+b\right)c+4c^2-4\left(b+c\right)a+4a^2-4\left(a+c\right)b+4b^2\)
\(\Rightarrow ab-\left(a+b\right)c+c^2+bc-\left(b+c\right)a+a^2+ac-\left(a+c\right)c+b^2=0\)
\(\Rightarrow ab-ac-bc+c^2+bc-ab-ac+a^2+ac-ab-bc+b^2=0\)
\(\Rightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Xảy ra khi \(\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\Rightarrow a=b=c\)