Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Gọi h là khoảng cách từ B → A C D
⇒ h = a 3 2 ⇒ S Δ A C D = 3 V A B C D h = 3 a 3 3 12 a 3 2 = a 2 2
Gọi M là trung điểm AD ⇒ C M ⊥ A D .
⇒ C M = 2 S A C D A D = 2. a 2 2 a 2 = a 2 2 = 1 2 A D
⇒ Δ A C D vuông tại C ⇒ C A = C D = a
Δ C A D = Δ C B A C . C . C ⇒ A C D ^ = A C B ^ = 90 0
⇒ A C ⊥ C D A C ⊥ C B ⇒ A C ⊥ B C D ⇒ A C D ⊥ B C D
Hay góc giữa hai mặt phẳng bằng 90 0
Đáp án B
Đặt a=2. Gọi H là trung điểm của BC khi đó A H ⊥ B C D H ⊥ B C
Suy ra B C ⊥ A H D và ta có A H = D H = a 3 2
Gọi E là trung điểm của AD do tam giác AHD cân nên
H E ⊥ A D ⇒ H E = A H 2 − A E 2 = 3 a 2 4 − x 2 4
Ta có V A B C D = V B . A H D + V C . A H D
= 1 3 B C . S A H D = 1 3 a . 1 2 H E . A D
Lại có:
3 a 2 4 − x 2 4 . x = 2 3 a 2 4 − x 2 4 . x 2 ≤ 3 a 2 4 − x 2 4 + x 2 4
= 3 a 2 4 ⇒ V A B C D ≤ a 3 8 ⇒ V max = a 3 8 .
Dấu bằng xảy ra 3 a 2 = 2 x 2 ⇔ x = a 6 2 = 6
Cách 2: Nhận xét V max ⇔ S A H D lớn nhất 1 2 A H . D H sin A H D ⏜ = 3 a 2 8 . sin A H D ⏜ ≤ 3 a 2 8
Đáp án C
Gọi H là trung điểm BC khi đó A H ⊥ B C D H ⊥ B C
SUY RA B C ⊥ A H D và ta có A H = D H = a 3 2
Gọi E là trung điểm của AD do tam giác AHD cân nên
H E ⊥ A D ⇒ H E = A H 2 − A E 2 = 3 a 2 4 − x 2 4
Ta có V A B C D = V B A H D + V C A H D = 1 3 B C . S A H D = 1 3 a 1 2 H E . A D
Lại có
3 a 2 4 − x 2 4 . x = 2. 3 a 2 4 − x 2 4 . x 2 ≤ 3 a 2 4 − x 2 4 + x 2 4 = 3 a 2 4 ⇒ V A B C D ≤ a 3 8 ⇒ V m a x = a 3 8
Dấu bằng xảy ra khi và chỉ khi 3 a 2 = 2 x 2 ⇔ x = a 6 2 = 3 2
Đáp án đúng : D