K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2018

Đáp án C

Có 3 phương án đúng: i, iii, iv.

22 tháng 10 2019

4 tháng 7 2017

Chọn B

Phương pháp:

Chia khối lập phương, nhận xét các khối tạo thành và tính thể tích của chúng

Cách giải:

Chia khối lập phương ABC.A’B’C’ bởi mặt phẳng (AB’D’) và (C’BD) ta được:

+) Chóp A.A’B’D’

+) Chóp C’.BCD

+) Khối bát diện ABD.B’C’D’

Ta có

Các khối A.A’B’D’ và C’.BCD không phải là chóp tam giác đều và khối bắt diện ABD.B’C’D’ không phải là khói bát diện đều

Do đó chỉ có mệnh đề III đúng

30 tháng 8 2017

10 tháng 3 2019

Chọn B

4 tháng 9 2018

Đáp án C

 

 

10 tháng 11 2018

Đáp án C

Nhìn hình vẽ ta thấy V 1 = V S . M I A G .

 

Gọi   V S . A B C D = V

                 ⇒ V S . A B C = V S . A D C = V 2

Có  V S . A G M V S . A B C = S G S B . S M S C = 2 3 . 1 2 = 1 3

                      ⇒ V S . A G M = V 6

 

Có  V S . A M I V S . A D C = S M S C . S I S D = 1 2 . 2 3 = 1 3

                       ⇒ V S . A M I = V 6

                ⇒ V S . M I A G = V 3 ⇒ V 2 = V − V 3 = 2 3 V ⇒ V 2 V 1 = 2

 

 

7 tháng 7 2018

Chọn B

20 tháng 3 2018

Đáp án B  

Ta có V A 1 B 1 C A = V B 1 A A 1 C = 1 2 V B 1 A A 1 C 1 C = 1 2 . 2 3 V A B C . A 1 B 1 C 1 = 1 3 V A B C . A 1 B 1 C 1  

Gọi H là hình chiếu của A1 trên m p A B C ⇒ A A 1 ; A B C ^ = A 1 H A ^ = 30 °  

TAM GIÁC A 1 H A vuông tại H, có  sin A 1 H A ^ = A 1 H A A 1 ⇒ A 1 H = a 2 2

Vậy thể tích  V A B C . A 1 B 1 C 1 = A 1 H . S Δ A B C = a 2 2 . a 2 3 4 = a 3 6 8 ⇒ V A 1 B 1 C A = a 3 6 24