K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
31 tháng 3 2019

Gọi thể tích lăng trụ là V, gọi M là trung điểm B'C'

\(\Rightarrow V_{ABF.A'B'M}=\frac{1}{2}V\)

\(V_{B'.AA'MF}=\frac{2}{3}V_{ABF.A'B'M}=\frac{1}{3}V\)

\(S_{AEF}=\frac{1}{2}S_{AA'MF}\Rightarrow V_{B'.AEF}=\frac{1}{2}V_{B'.AA'MF}=\frac{1}{6}V\)

1 tháng 2 2021

c

AH
Akai Haruma
Giáo viên
26 tháng 12 2017

Lời giải:

Từ $A$ kẻ $AH$ vuông góc với $BC$

Khi đó:

\(60^0=\angle ((A'BC), (ABC))=\angle (AH, A'H)=\angle AHA'\)

Do hình lăng trụ đã cho là lăng trụ đều nên tam giác $ABC$ là tam giác đều có đường cao $AH$ nên:

\(AH=\sqrt{a^2-(\frac{a}{2})^2}=\frac{\sqrt{3}a}{2}\)

\(\Rightarrow \sqrt{3}=\tan AHA'=\frac{AA'}{AH}\Rightarrow AA'=\frac{3}{2}a\)

\(V_{ABC.A'B'C'}=S_{ABC}.AA'=\frac{AH.BC}{2}.\frac{3}{2}a=\frac{\sqrt{3}a^2}{4}.\frac{3}{2}a=\frac{3\sqrt{3}a^3}{8}\)