Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
_ Thể tích khối lăng trụ :
Gọi D là trung điểm của BC ta có : \(BC\perp AD\Rightarrow BC\perp A'D\Rightarrow\widehat{ADA'}=60^0\)
Ta cso \(AA'=AD.\tan\widehat{ADA'}=\frac{3a}{2};S_{ABC}=\frac{a^2\sqrt{3}}{4}\)
Do đó \(V_{ABC.A'B'C'=}S_{ABC}.AA'=\frac{3a^2\sqrt{3}}{8}\)
- Bán kính mặt cầu ngoại tiếp tứ diện GABC :
Ta có I là giao điểm của GH với đường trung trực của AG trong mặt phẳng (AGH)
Gọi E là trung điểm của AG, ta có :
\(R=GI=\frac{GE.GA}{GH}=\frac{GA^2}{2GH}\)
Ta có :
\(GH=\frac{AA'}{3}=\frac{a}{2};AH=\frac{a\sqrt{3}}{3};GA^2=GH^2+AH^2=\frac{7a^2}{12}\)
Do đó \(R=\frac{7a^2}{2.12}.\frac{2}{a}=\frac{7a}{12}\)
Chọn A.
Gọi H là trung điểm của BC
Đặt AB = a ta có: AH = a 3 2
Xét tam giác A'AH ta tìm được: A'H= a, AA'= a 2
S A ' B C = 8 ⇔ 1 2 A ' H . B C = 8 ⇔ a = 4
Thể tích của khối lăng trụ ABC.A'B'C' :
V = A A ' . S A B C = 8 3
Chọn C
Gọi M là trung điểm của BC
=> AM ⊥ BC (1)
Ta có B C ⊥ A M B C ⊥ A A ' ⇒ B C ⊥ A ' M ( 2 )
Mặt khác A B C ∩ A ' B C = B C ( 3 )
Đáp án là A
Gọi là trung M điểm của BC
Chứng minh được BC ⊥ (AA'M) . Do đó góc giữa hai mặt phẳng (A'BC) và mặt phẳng (ABC) là góc A ' M A ^ = 30 o
Đặt AB = x
Tam giác là hình ABC chiếu của tam giác A'BC lên mặt phẳng (ABC)