Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét khai triển:
\(\left(x+1\right)^n=C_n^0+C_n^1x+C_n^2x^n+C_n^3x^3+...+C_n^nx^n\)
Đạo hàm 2 vế:
\(n\left(x+1\right)^{n-1}=C_n^1+2C_n^2x+3C_n^3x^2+...+nC_n^nx^{n-1}\)
Thay \(x=1\) vào ta được:
\(n.2^{n-1}=C_n^1+2C_n^2+3C_n^3+...+nC_n^2=256n\)
\(\Rightarrow2^{n-1}=256=2^8\Rightarrow n=9\)
Câu 2:
\(\left(x-2\right)^{80}=a_0+a_1x+a_2x^2+a_3x^3+...+a_{80}x^{80}\)
Đạo hàm 2 vế:
\(80\left(x-2\right)^{79}=a_1+2a_2x+3a_3x^2+...+80a_{80}x^{79}\)
Thay \(x=1\) ta được:
\(80\left(1-2\right)^{79}=a_1+2a_2+3a_3+...+80a_{80}\)
\(\Rightarrow S=80.\left(-1\right)^{79}=-80\)
\(\left(1+x\right)^n=\sum\limits^n_{k=0}C_n^kx^k\)
Hệ số của 2 số hạng liên tiếp là \(C_n^k\) và \(C_n^{k+1}\)
\(\Rightarrow7C_n^k=5C_n^{k+1}\Leftrightarrow\frac{7n!}{k!.\left(n-k\right)!}=\frac{5n!}{\left(k+1\right)!\left(n-k-1\right)!}\)
\(\Leftrightarrow\frac{7}{n-k}=\frac{5}{k+1}\Leftrightarrow7k+7=5n-5k\)
\(\Leftrightarrow5n=12k+7\Rightarrow n=\frac{12k+7}{5}\)
\(\Rightarrow n_{min}=11\) khi \(k=4\)
2/ \(\left(x-2\right)^{100}=\sum\limits^{100}_{k=0}C_{100}^kx^k.\left(-2\right)^{100-k}\)
\(a_{97}\) là hệ số của \(x^{97}\Rightarrow k=97\)
Hệ số là \(C_{100}^{97}.\left(-2\right)^3\)
a. Chắc đề là: \(\lim\dfrac{2-5^{n-2}}{3^n+2.5^n}=\lim\dfrac{2\left(\dfrac{1}{5}\right)^{n-2}-1}{9\left(\dfrac{3}{5}\right)^{n-2}+50}=-\dfrac{1}{50}\)
b. \(=\lim\dfrac{2\left(\dfrac{1}{5}\right)^n-25}{\left(\dfrac{3}{5}\right)^n-2}=\dfrac{25}{2}\)
2.
Đặt \(f\left(x\right)=x^4+x^3-3x^2+x+1\)
Hàm f(x) liên tục trên R
\(f\left(0\right)=1>0\) ; \(f\left(-1\right)=-3< 0\)
\(\Rightarrow f\left(0\right).f\left(-1\right)< 0\Rightarrow f\left(x\right)=0\) luôn có ít nhất 1 nghiệm thuộc khoảng \(\left(-1;0\right)\)
Hay pt đã cho luôn có ít nhất 1 nghiệm âm lớn hơn -1
3.
Ta có: M là trung điểm AD, N là trung điểm SD
\(\Rightarrow\) MN là đường trung bình tam giác SAD
\(\Rightarrow MN||SA\Rightarrow\left(MN,SC\right)=\left(SA,SC\right)\)
Ta có: \(AC=\sqrt{AB^2+BC^2}=a\sqrt{2}\)
\(SA=SC=a\)
\(\Rightarrow SA^2+SC^2=AC^2\Rightarrow\Delta SAC\) vuông tại S hay \(SA\perp SC\)
\(\Rightarrow\) Góc giữa MN và SC bằng 90 độ
\(\lim\dfrac{1+a+...+a^n}{1+b+...+b^n}=\lim\dfrac{\dfrac{1-a^n}{1-a}}{\dfrac{1-b^n}{1-b}}=\lim\dfrac{\left(1-a^n\right)\left(1-b\right)}{\left(1-b^n\right)\left(1-a\right)}=\dfrac{1-b}{1-a}\)
\(\Rightarrow\dfrac{1-b}{1-a}=\dfrac{2}{3}\Leftrightarrow3-3b=2-2a\)
\(\Leftrightarrow2a-3b=-1\)
Bạn xem lại đề, với a;b;c dương thì biểu thức P không tồn tại max nếu đề hoàn toàn đúng
Muốn P tồn tại max thì a;b;c cần không âm (nghĩa là có thể bằng 0)
\(\left(x^3+x^{-3}\right)^{18}=\sum\limits^{18}_{k=0}C^k_{18}.x^{3\left(18-k\right)}.x^{-3k}=\sum\limits^{18}_{k=0}C^k_{18}x^{54-6k}\)
Số hạng không chứa \(x\Rightarrow54-6k=0\Rightarrow k=9\)
Hệ số: \(C^9_{18}=48620\)
2/ Chọn ngẫu nhiên 7 quyển có \(C^7_{21}=116280\) cách
Các trường hợp có ít nhất 2 toán 2 lý 2 hóa: {3 toán 2 lý 2 hóa}; {2 toán 3 lý 2 hóa}; {2 toán 2 lý 3 hóa}
\(\Rightarrow\) có \(C^3_{10}.C^2_6.C^2_5+C^2_{10}.C^3_6.C^2_5+C^2_{10}.C^2_6.C^3_5=33750\) cách
Xác suất \(P=\dfrac{33750}{116280}=\dfrac{375}{1292}\)
Cách tính đúng rồi đấy, nhưng quá trình bấm máy thì bạn phải tự bấm lại cho chắc ăn