Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình vẽ chóp tứ giác đều t lấy từ mạng xuống bạn tự xác định thêm M và N vào hình rồi đọc lời giải nhé! ( T hết pin điện thoại )
Dễ thấy MN//SA ( tính chất đường trung bình ) thực chất ta đi tìm góc (MN,SC) là đi tìm góc (SA,SC)
Ta lại có \(AC=a\sqrt{2}\) ( đường chéo hình vuông ) \(\Rightarrow AO=\dfrac{a\sqrt{2}}{2}\)
vì \(SO\perp\left(ABCD\right)\Rightarrow SO\perp AO\Rightarrow\Delta SAO\perp O\)
\(\Rightarrow SO=\sqrt{SA^2-AO^2}=\sqrt{\left(\dfrac{a\sqrt{6}}{2}\right)^2-\left(\dfrac{a\sqrt{2}}{2}\right)^2}=a\)
\(\Rightarrow\cos\left(SA,SO\right)=\dfrac{SO}{SA}=\dfrac{\sqrt{6}}{3}\Rightarrow\widehat{ASO}\simeq35^015^'\)
\(\Rightarrow\widehat{ASC}\simeq70^031^'\)
vl viết đến 2 dòng cuối còn bị lỗi nữa ạ :((
viết lại ở phần bình luận vậy
\(\Rightarrow\cos\left(SA,SO\right)=\dfrac{SO}{SA}=\dfrac{\sqrt{6}}{3}\Rightarrow\widehat{ASO}\simeq35^0\) 15'
\(\Rightarrow\cos\left(SA,SC\right)=2\cos\left(SA,SO\right)\Rightarrow\widehat{ASC}\simeq70^0\) 31'
1. Câu này đề bài là: \(\lim\limits_{x\rightarrow1}\dfrac{x-\sqrt[]{x+2}}{x-\sqrt[3]{3x+2}}\) đúng ko nhỉ?
Vậy thay số là được: \(=\dfrac{1-\sqrt[]{1+2}}{1-\sqrt[3]{3+2}}=\dfrac{1-\sqrt[]{3}}{1-\sqrt[3]{5}}\)
2.
a. \(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\\CD\perp AD\left(gt\right)\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAD\right)\)
b.
Trong mp (ABCD), từ D kẻ \(DE\perp AC\) (1)
\(SA\perp\left(ABCD\right)\Rightarrow SA\perp DE\) (2)
(1);(2) \(\Rightarrow DE\perp\left(SAC\right)\Rightarrow SE\) là hình chiếu vuông góc của SD lên (SAC)
\(\Rightarrow\widehat{DSE}\) là góc giữa SD và (SAC) hay \(\widehat{DSE}=\alpha\)
\(AC=\sqrt{AB^2+AD^2}=a\sqrt{5}\)
Áp dụng hệ thức lượng trong tam giác vuông ADC:
\(AE.AC=AD^2\Rightarrow AE=\dfrac{AD^2}{AC}=\dfrac{4a\sqrt{5}}{5}\)
\(SE=\sqrt{SA^2+AE^2}=\dfrac{a\sqrt{105}}{5}\) ; \(SD=\sqrt{SA^2+AD^2}=a\sqrt{5}\)
\(\Rightarrow cos\alpha=\dfrac{SE}{SD}=\dfrac{\sqrt{21}}{5}\)
Do các cạnh của chóp đều bằng a nên các mặt bên là tam giác đều
\(SN=\sqrt{SA^2+AN^2-2SA.AN.cos60^0}=\dfrac{a\sqrt{3}}{2}\)
\(SM=\dfrac{1}{2}SB=\dfrac{a}{2}\) ; \(SO=\sqrt{SA^2-OA^2}=\dfrac{a\sqrt{2}}{2}\)
Từ M hạ NH vuông góc BO \(\Rightarrow MH=\dfrac{1}{2}SO=\dfrac{a\sqrt{2}}{4}\)
\(NH=\sqrt{\left(\dfrac{a}{4}\right)^2+\left(\dfrac{3a}{4}\right)^2}=\dfrac{a\sqrt{10}}{4}\)
\(\Rightarrow MN=\sqrt{MH^2+NH^2}=\dfrac{a\sqrt{3}}{2}\)
\(cos\widehat{SMN}=\dfrac{SM^2+MN^2-SN^2}{2SM.MN}=\dfrac{\sqrt{3}}{6}\)
\(\Rightarrow\widehat{SMN}\approx73^013'\)
Tất cả đáp án đều sai
a. Chắc đề là: \(\lim\dfrac{2-5^{n-2}}{3^n+2.5^n}=\lim\dfrac{2\left(\dfrac{1}{5}\right)^{n-2}-1}{9\left(\dfrac{3}{5}\right)^{n-2}+50}=-\dfrac{1}{50}\)
b. \(=\lim\dfrac{2\left(\dfrac{1}{5}\right)^n-25}{\left(\dfrac{3}{5}\right)^n-2}=\dfrac{25}{2}\)
2.
Đặt \(f\left(x\right)=x^4+x^3-3x^2+x+1\)
Hàm f(x) liên tục trên R
\(f\left(0\right)=1>0\) ; \(f\left(-1\right)=-3< 0\)
\(\Rightarrow f\left(0\right).f\left(-1\right)< 0\Rightarrow f\left(x\right)=0\) luôn có ít nhất 1 nghiệm thuộc khoảng \(\left(-1;0\right)\)
Hay pt đã cho luôn có ít nhất 1 nghiệm âm lớn hơn -1
3.
Ta có: M là trung điểm AD, N là trung điểm SD
\(\Rightarrow\) MN là đường trung bình tam giác SAD
\(\Rightarrow MN||SA\Rightarrow\left(MN,SC\right)=\left(SA,SC\right)\)
Ta có: \(AC=\sqrt{AB^2+BC^2}=a\sqrt{2}\)
\(SA=SC=a\)
\(\Rightarrow SA^2+SC^2=AC^2\Rightarrow\Delta SAC\) vuông tại S hay \(SA\perp SC\)
\(\Rightarrow\) Góc giữa MN và SC bằng 90 độ