K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2019

có cả toán lớp 13 ??

18 tháng 6 2019

Dương Bá Gia Bảo toán lớp 13?

20 tháng 6 2018

bài này giải sao z??!

20 tháng 6 2018

ai giúp e gấp với !!

20 tháng 5 2018

Bạn hãy phá ngoặc ra rồi phân tích
P=(a+b+c)(ab+bc+ac)-2abc
Vì a+b+c chia hết cho 4 nên trong 3 số a,b,c phải có ít nhất1 số chẵn do đó 2abc chia hết cho 4 nên P chia hết cho 4 nếu a+b+c chia hết cho 4

20 tháng 5 2018

sr mik nhầm câu

NV
15 tháng 6 2019

Đặt \(y=f\left(x\right)\Leftrightarrow x+y^3+2y=1\Leftrightarrow x=-y^3-2y+1\)

\(\Rightarrow dx=\left(-3y^2-2\right)dy\)

\(x=-2\Rightarrow-y^3-2y+1=-2\Rightarrow y=1\)

\(x=1\Rightarrow-y^3-2y+1=1\Rightarrow y=0\)

\(\Rightarrow\int\limits^1_{-2}f\left(x\right)dx=\int\limits^0_1y\left(-3y^2-2\right)dy=\int\limits^1_0\left(3y^3+2y\right)dy=\frac{7}{4}\)

9 tháng 1 2017

\(\int\dfrac{x}{\sqrt{1-x^2}}dx=-\dfrac{1}{2}\int\dfrac{1}{\sqrt{1-x^2}}d(1-x^2)=-\sqrt{1-x^2}\)

22 tháng 3 2017

quá đơn giản...kkk

AH
Akai Haruma
Giáo viên
24 tháng 5 2018

Lời giải:

Ta thấy $y$ là hàm số bậc 3 nên có nhiều nhất hai giá trị cực trị. Như vậy để đths có 2 điểm cực trị $A,B$ thì hoành độ $A,B$ là hai nghiệm của pt :

\(y'=0\)

\(\Leftrightarrow 6x^2-6(m+1)x+6m=0\)

\(\Leftrightarrow 6(x-m)(x-1)=0\)

Từ đây suy ra \(m\neq 1\). Hai điểm cực trị của đths là \(A(m, -m^3+3m^2); B(1, -1+3m)\)

\(\Rightarrow \overrightarrow{AB}=(1-m, m^2-3m^2+3m-1)\)

Để đt \(AB\) vuông góc với đt \(x-y+2=0\) thì:

\((1-m, m^3-3m^2+3m-1)=k(1,-1)\)

\(\Rightarrow \frac{1-m}{m^3-3m^2+3m-1}=-1\)

\(\Leftrightarrow \frac{1-m}{(m-1)^3}=-1\Leftrightarrow \frac{-1}{(m-1)^2}=-1\)

\(\Leftrightarrow m=0 \) hoặc $m=2$

Đáp án D

13 tháng 12 2018

Chỉ em cách biến đổi y' thành 6(x-m)(x-1) được không ạ

AH
Akai Haruma
Giáo viên
25 tháng 1 2017

Lời giải:

a) Vì \(6^x-2^x>0\Rightarrow x>0\)

Xét \(y=6^x-2^x-32\)\(y'=\ln 6.6^x-\ln 2.2^x>0\forall x>0\) nên hàm $y$ đồng biến trên \(x\in(0,+\infty)\).

Khi đó phương trình \(6^x-2^x=32\) có nghiệm duy nhất $x=2$

b) Có \(5^{7^x}=7^{5^x}\Leftrightarrow \log(5^{7^x})=\log (7^{5^x})\)

\(\Leftrightarrow 7^x\log 5=5^x\log 7=7^{x\frac{\log 5}{\log 7}}\log 7\)

\(\Leftrightarrow 7^{x(1-\frac{\log 5}{\log 7})}=\frac{\log 7}{\log 5}=10^{x\log 7(1-\frac{\log 5}{\log 7})}=10^{x\log(\frac{7}{5})}\)

\(\Leftrightarrow x\log\frac{7}{5}=\log\left ( \frac{\log 7}{\log 5} \right )\)\(\Rightarrow x=\frac{\log\left ( \frac{\log 7}{\log 5} \right )}{\log\frac{7}{5}}\)

AH
Akai Haruma
Giáo viên
27 tháng 1 2017

d) ĐKXĐ:...........

\(3^x+\frac{1}{3^x}=\sqrt{8-x^2}\Leftrightarrow 9^x+\frac{1}{9^x}+2=8-x^2\)

\(\Leftrightarrow 9^x+\frac{1}{9^x}+x^2=6\)

Giả sử \(x\geq 0\) . Xét hàm \(y=9^x+\frac{1}{9^x}+x^2\)\(y'=9^x\ln 9-\frac{\ln 9}{9^x}+2x\geq 0\) nên hàm đồng biến trên \(x\in [0,+\infty)\)

Do đó PT \(9^x+\frac{1}{9^x}+x^2=6\) với $x\geq 0$ có nghiệm duy nhất \(x\approx 0,753897\)

---------------------------------------------------------------------------------

Vì hàm \(y\) là hàm chẵn nên $-x$ cũng là nghiệm, do đó tổng kết lại PT có nghiệm là \(x\approx \pm 0,753897\)