Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
góc A chung
=>ΔABD đồng dạng với ΔACE
b: ΔABD đồng dạng với ΔACE
=>AD/AE=AB/AC
=>AD/AB=AE/AC
=>ΔADE đồng dạng với ΔABC
=>góc ADE=góc ABC
a) △APQ và △BMQ có: \(\widehat{PAQ}=\widehat{MBQ}=45^0\); \(\widehat{AQP}=\widehat{BQM}\).
\(\Rightarrow\)△APQ∼△BMQ (g-g).
\(\Rightarrow\dfrac{QP}{QA}=\dfrac{QM}{QB}\Rightarrow\dfrac{QP}{QM}=\dfrac{QA}{QB}\).
△ABQ và △MPQ có: \(\dfrac{QP}{QM}=\dfrac{QA}{QB};\widehat{AQB}=\widehat{MQP}\)
\(\Rightarrow\)△ABQ∼△MPQ (c-g-c).
b) △ABQ∼△MPQ \(\Rightarrow\widehat{BAQ}=\widehat{MPQ}\).
△APQ và △BPA có: \(\widehat{PAQ}=\widehat{PBA}=45^0;\widehat{APB}\) là góc chung.
\(\Rightarrow\)△APQ∼△BPA (g-g)\(\Rightarrow\widehat{BAP}=\widehat{AQP}\).
Mà \(\widehat{AQP}+\widehat{APQ}=180^0-\widehat{PAQ}=180^0-45^0=135^0\)
\(\Rightarrow\widehat{BAP}+\widehat{APQ}=135^0\)
\(\Rightarrow45^0+\widehat{BAQ}+\widehat{APQ}=135^0\)
\(\Rightarrow\widehat{MPQ}+\widehat{APQ}=\widehat{APM}=90^0\)
Hay MP⊥AN tại P.
a: Xét ΔHEB vuông tại E và ΔHCF vuông tại C có
góc EHB=góc CHF
=>ΔHEB đồng dạng với ΔHCF
=>HE/HC=HB/HF
=>HE*HF=HB*HC
b: Xét ΔDEF vuông tại E và ΔDCB vuông tại C có
góc EDF chung
=>ΔDEF đồng dạng với ΔDCB