Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) △APQ và △BMQ có: \(\widehat{PAQ}=\widehat{MBQ}=45^0\); \(\widehat{AQP}=\widehat{BQM}\).
\(\Rightarrow\)△APQ∼△BMQ (g-g).
\(\Rightarrow\dfrac{QP}{QA}=\dfrac{QM}{QB}\Rightarrow\dfrac{QP}{QM}=\dfrac{QA}{QB}\).
△ABQ và △MPQ có: \(\dfrac{QP}{QM}=\dfrac{QA}{QB};\widehat{AQB}=\widehat{MQP}\)
\(\Rightarrow\)△ABQ∼△MPQ (c-g-c).
b) △ABQ∼△MPQ \(\Rightarrow\widehat{BAQ}=\widehat{MPQ}\).
△APQ và △BPA có: \(\widehat{PAQ}=\widehat{PBA}=45^0;\widehat{APB}\) là góc chung.
\(\Rightarrow\)△APQ∼△BPA (g-g)\(\Rightarrow\widehat{BAP}=\widehat{AQP}\).
Mà \(\widehat{AQP}+\widehat{APQ}=180^0-\widehat{PAQ}=180^0-45^0=135^0\)
\(\Rightarrow\widehat{BAP}+\widehat{APQ}=135^0\)
\(\Rightarrow45^0+\widehat{BAQ}+\widehat{APQ}=135^0\)
\(\Rightarrow\widehat{MPQ}+\widehat{APQ}=\widehat{APM}=90^0\)
Hay MP⊥AN tại P.
a) △APQ và △BMQ có: \(\widehat{PAQ}=\widehat{MBQ}=45^0;\widehat{AQP}=\widehat{BQM}\).
\(\Rightarrow\)△APQ∼△BMQ (g-g)
\(\Rightarrow\dfrac{QP}{QM}=\dfrac{QA}{QB}\Rightarrow\dfrac{QP}{QA}=\dfrac{QM}{QB}\)
△ABQ và △PMQ có: \(\dfrac{QP}{QA}=\dfrac{QM}{QB};\widehat{AQB}=\widehat{PQM}\)
\(\Rightarrow\)△ABQ∼△PMQ (c-g-c).
b) △ABQ∼△PMQ \(\Rightarrow\dfrac{PM}{AB}=\dfrac{PQ}{AQ};\widehat{BAQ}=\widehat{MPQ}\Rightarrow MP=\dfrac{PQ}{AQ}.AB\)
△APQ và △BPA có: \(\widehat{QAP}=\widehat{ABP}=45^0;\widehat{APB}\) là góc chung.
\(\Rightarrow\)△APQ∼△BPA (g-g)
\(\Rightarrow\widehat{AQP}=\widehat{BAP}\)
\(\widehat{APM}=\widehat{APQ}+\widehat{MPQ}=180^0-45^0-\widehat{AQP}+\widehat{BAQ}=180^0-45^0-\left(\widehat{BAP}-\widehat{BAQ}\right)=180^0-45^0-45^0=90^0\)
\(\Rightarrow\)MP⊥AN tại P.
△MPN và △AHN có: \(\widehat{MPN}=\widehat{AHN}=90^0;\widehat{ANM}\) là góc chung.
\(\Rightarrow\)△MPN∼△AHN (g-g)
\(\Rightarrow\dfrac{AH}{MP}=\dfrac{AN}{MN};\dfrac{NP}{NH}=\dfrac{NM}{NA}\Rightarrow\dfrac{NP}{NM}=\dfrac{NH}{NA}\)
△APQ và △AMN có: \(\dfrac{NP}{NM}=\dfrac{NH}{NA};\widehat{MAN}\) là góc chung.
\(\Rightarrow\)△APQ∼△AMN (c-g-c)
\(\Rightarrow\dfrac{AQ}{AN}=\dfrac{PQ}{MN}\Rightarrow\dfrac{MN}{AN}=\dfrac{PQ}{AQ}\)
\(\dfrac{AH}{MP}=\dfrac{AN}{MN}\Rightarrow AH=MP.\dfrac{AN}{MN}=\dfrac{PQ}{AQ}.AB.\dfrac{AN}{AM}=AB\) không đổi.
E làm câu a rùi nên chị ko làm nữa nha
b. Dễ c.m được tam giác EAF đồng dạng với tam giác EBM(gg)
nên \(\frac{EA}{EB}=\frac{FE}{EM}\Leftrightarrow\frac{AE}{FE}=\frac{EB}{EM}\)
hay tam giác AEB đồng dạng với tam giác EFM
nên AMF=45 độ
nên AFM=90 hay MF vuông với AN
c. Ta thấy SAMN =SADN+SABM
Dễ tính được \(AC=4\sqrt{2}\left(Pytago\right)\)
TA thấy EA là phân giác BAC nên \(\frac{AB}{BM}=\frac{AC}{CM}=\frac{AB+AC}{BM+CM}=\frac{AB+AC}{CB}=1+\sqrt{2}\)
\(\Rightarrow BM=-4+4\sqrt{2}\)
Tương tự ta cũng có FA là phân giác DAC nên \(\frac{AD}{DN}=\frac{AC}{CN}=\frac{AD+AC}{CD}=1+\sqrt{2}\)
\(\Rightarrow DN=-4+4\sqrt{2}\)
Vậy SAMN =SADN+SABM=\(\frac{1}{2}\cdot AD\cdot DN+\frac{1}{2}\cdot AB\cdot BM=4\cdot\left(-4+4\sqrt{2}\right)=-16+16\sqrt{2}\)(ĐVDT)
Chắc vậy ^.^
Chúc học tốt
Bài 1:
Do E là hình chiếu của D trên AB:
=) DE\(\perp\)AB tại E
=) \(\widehat{DE\text{A}}\)=900
Do F là hình chiếu của D trên AC:
=) DF\(\perp\)AC
=) \(\widehat{DFA}\)=900
Xét tứ giác AEDF có :
\(\widehat{D\text{E}F}\)=\(\widehat{E\text{A}F}\)=\(\widehat{DFA}\) (cùng bằng 900)
=) Tứ giác AEDF là hình chữ nhật
Xét hình chữ nhật AEDF có :
AD là tia phân giác của \(\widehat{E\text{A}F}\)
=) AEDF là hình vuông