K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
5 tháng 10 2022
Bài 4:
Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
góc D=góc C
Do đó: ΔAED=ΔBFC
=>DE=CF
Bài 3:
a: Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
=>góc ACD=góc BDC
b: Ta co: góc ACD=góc BDC
=>góc EAB=góc EBA
=>ΔEAB cân tại E
KN
28 tháng 10 2019
a) NF là đường trung bình của \(\Delta DBC\)nên \(NF=\frac{1}{2}CD\)
DF là đường trung bình của \(\Delta ABC\)nên \(DF=\frac{1}{2}AB\)
NE là đường trung bình của \(\Delta ABD\)nên \(NE=\frac{1}{2}AB\)
Dễ c/m : NF = ED (t/c cặp đoạn chắn song song)
Vậy NE = ED = DF = NF
Vậy tứ giác ENFD là hình thoi
E làm câu a rùi nên chị ko làm nữa nha
b. Dễ c.m được tam giác EAF đồng dạng với tam giác EBM(gg)
nên \(\frac{EA}{EB}=\frac{FE}{EM}\Leftrightarrow\frac{AE}{FE}=\frac{EB}{EM}\)
hay tam giác AEB đồng dạng với tam giác EFM
nên AMF=45 độ
nên AFM=90 hay MF vuông với AN
c. Ta thấy SAMN =SADN+SABM
Dễ tính được \(AC=4\sqrt{2}\left(Pytago\right)\)
TA thấy EA là phân giác BAC nên \(\frac{AB}{BM}=\frac{AC}{CM}=\frac{AB+AC}{BM+CM}=\frac{AB+AC}{CB}=1+\sqrt{2}\)
\(\Rightarrow BM=-4+4\sqrt{2}\)
Tương tự ta cũng có FA là phân giác DAC nên \(\frac{AD}{DN}=\frac{AC}{CN}=\frac{AD+AC}{CD}=1+\sqrt{2}\)
\(\Rightarrow DN=-4+4\sqrt{2}\)
Vậy SAMN =SADN+SABM=\(\frac{1}{2}\cdot AD\cdot DN+\frac{1}{2}\cdot AB\cdot BM=4\cdot\left(-4+4\sqrt{2}\right)=-16+16\sqrt{2}\)(ĐVDT)
Chắc vậy ^.^
Chúc học tốt