Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
Vì số cần tìm nhỏ nhất nên ta lần lượt thử chọn với các giá trị số nhỏ nhất.
- Giả sử số tự nhiên có dạng 11111a
=> 111110 + a chia hết cho 1987. Vì 111110 chia 1987 dư 1825
=> a chia 1987 dư 162 ( vô lí - 162 > a).
- Giả sử số tự nhiên có dạng 11111ab
=> 1111100 + ab chia hết cho 1987. Vì 1111100 chia 1987 dư 367=> ab chia 1987 dư 1620 ( vô lí - 1620 > ab)
- Giả sử số tự nhiên có dạng 11111abc
=> 11111000 + abc chia hết cho 1987. Vì 11111000 chia 1987 dư 1683
=> abc chia 1987 dư 304. Mà abc nhỏ nhất
=> abc = 304
Vậy số tự nhiên là 11111304
Ta có:
\(ab.cd=b.111=b.3.37\)
\(\Rightarrow ab,cd⋮37\)
\(\Rightarrow ab,cd\) có thể bẳng \(37\) hoặc \(74\)
Nếu \(ab=37\Rightarrow37.cd=777\Rightarrow cd=21\left(nhận\right)\)
Nếu \(ab=74\Rightarrow74.cd=444\Rightarrow cd=6\left(loại\right)\)
Nếu \(cd=37\Rightarrow ab.37=b.111\Rightarrow ab=b.3\)
Vì \(b.3\) được số tận cùng là \(b\Rightarrow b=5\Rightarrow ab=15\)
Nếu \(cd=74\Rightarrow ab.74=b.111\Rightarrow ab.2=b.3\)
\(\Rightarrow\left(10.a.b\right).2=b.3\Rightarrow a.20+b.2\)
\(\Rightarrow a.20.b\)
Vậy \(ab=15;cd=27\) hoặc \(ab=37;cd=21\)
Gọi số cần tìm là \(\overline{ab}\)
a/ \(\overline{ab}\) chia 5 dư 3 nên b=3 hoặc b=8
Với b=3 => \(\overline{ab}=\overline{a3}\) chia hết cho 9 => a+3 chia hết cho 9 => a=6
Với b=8 => \(\overline{ab}=\overline{a8}\) chia hết cho 9 => a+8 chia hết cho 9 => a=1
Vậy ta có các số 63; 18 thoả mãn câu a
b/ Câu b khả năng đề bài sai phải là abc-cb=ac Nếu như thế thì
\(\overline{abc}-\overline{cb}=\overline{ac}\Rightarrow100xa+10xb+c-10xc-b=10xa+c\)
\(\Rightarrow90xa+9xb=10xc\Rightarrow9\left(10xa+b\right)=10xc\) (*)
Vế phải chia hết cho 9 nên 10xc chia hết cho 9 => c=9
Thay c=9 vào biểu thức (*) => \(9x\left(10xa+b\right)=90\Rightarrow10xa+b=10\)
=> a=1; b=0
Số cần tìm là 109
4590 à bạn **** cho mik nhé Sara Trang Phạm