K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2021

a: Xét ΔMHQ vuông tại H và ΔPKN vuông tại K có 

MQ=PN

\(\widehat{MQH}=\widehat{PNK}\)

Do đó: ΔMHQ=ΔPKN

Suy ra: MH=PK

20 tháng 12 2021

a: Xét tứ giác MQAP có 

MQ//AP

MP//AQ

Do đó: MQAP là hình bình hành

NV
7 tháng 8 2021

a.

Xét hai tam giác MNP và MQP có:

\(\left\{{}\begin{matrix}MN=MQ\\NP=PQ\\MP\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta MNP=\Delta MQP\left(c.c.c\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\widehat{NMP}=\widehat{QMP}\\\widehat{NPM}=\widehat{QPM}\end{matrix}\right.\) hay MP là phân giác của góc M và P

b.

Do \(\left\{{}\begin{matrix}MN=MQ\\NP=PQ\end{matrix}\right.\) \(\Rightarrow MP\) là trung trực NQ

\(\Rightarrow MP\perp NQ\) (đpcm)

NV
7 tháng 8 2021

undefined

a: Xét tứ giác MNKP có

MN//KP

MP//NK

=>MNKP là hình bình hành

=>MP=NK

mà MP=NQ

nên NK=NQ

=>ΔNKQ cân tại N

b: MNKP là hbh

=>góc K=góc NMP

=>góc K=góc MPQ

=>góc MPQ=góc NQP

Xét ΔMQP và ΔNPQ có

MP=NQ

góc MPQ=góc NQP

QP chung

=>ΔMQP=ΔNPQ

c: ΔMQP=ΔNPQ

=>góc MQP=góc NPQ

=>MNPQ là hình thang cân

AH
Akai Haruma
Giáo viên
23 tháng 1 2022

Hình vẽ:

AH
Akai Haruma
Giáo viên
23 tháng 1 2022

Lời giải:
Áp dụng định lý Talet cho $AO\parallel MN$ thì:
$\frac{AO}{MN}=\frac{QA}{QM}(1)$

$A,O,B$ thẳng hàng nên $OB\parallel MN$. Áp dụng định lý Talet:

$\frac{OB}{MN}=\frac{PB}{PN}(2)$

Cũng vì $A,O,B$ thẳng hàng nên từ $OA\parallel MN$ suy ra $AB\parallel MN, QP$ 

$\Rightarrow \frac{OA}{QM}=\frac{PB}{PN}(3)$

Từ $(1); (2); (3)\Rightarrow \frac{OA}{MN}=\frac{OB}{MN}$

$\Rightarrow OA=OB$

Đề sai rồi bạn