K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 2 2022

Giả sử 1 đường thẳng d bất kì (trong 13 đường thẳng nói trên) cắt BC tại M và AD tại N sao cho \(\dfrac{S_{ABMN}}{S_{DCMN}}=\dfrac{2}{5}\)

Gọi E là trung điểm AB và F là trung điểm CD, d cắt EF tại G

\(\dfrac{S_{ABMN}}{S_{DCMN}}=\dfrac{\dfrac{1}{2}\left(BM+AN\right).AB}{\dfrac{1}{2}\left(CM+DN\right).AB}=\dfrac{BM+AN}{CM+DN}=\dfrac{2}{5}\)

Mặt khác do E, F là trung điểm AB, CD \(\Rightarrow EG\) là đường trung bình hình thang ABMN và FG là đường trung bình hình thang DCMN

\(\Rightarrow BM+AN=2EG\) ; \(CM+DN=2FG\)

\(\Rightarrow\dfrac{2EG}{2FG}=\dfrac{2}{5}\Rightarrow\dfrac{EG}{FG}=\dfrac{2}{5}\)

Hay G là điểm cố định nằm trên đoạn EF (cố định) chia đoạn EF theo tỉ lệ 2:5

Do tính đối xứng của hình vuông \(\Rightarrow\) có 4 điểm có tính chất tương tự G

Hay mọi đường thẳng trong 13 đường thẳng nói trên đều phải đi qua ít nhất 1 trong 4 điểm loại G

Theo định lý Dirichlet, tồn tại ít nhất \(\left[\dfrac{13}{4}\right]+1=4\) đường thẳng cùng đi qua 1 điểm

17 tháng 2 2022

cho e xin vía đc giỏi toán như thầy:>