Câu 1: Cho tam giác ABC vuông tại A ,đường cao AH a) Cho biết HB=9cm,HC=16cm.Tính các độ dài AH,AB=AC b) Chứng minh các hệ thức AH2=HB.HC,AB2=BC.BH Câu 2: Tam giác ABC vuông tại A, đường cao AH, HB=4cm,HC=9cm.Gọi M là trung điểm của BC. Tính các cạnh của tam giác AHM .Câu3: Cho tam giác ABC vuông tại A . Hình vuông MNPQ có M thuộc cạnh AB,N thuộc cạnh AC ,P và Q thuộc cạnh BC . Biết BQ=4cm,CP=9cm. Tính cạnh của hình...
Đọc tiếp
Câu 1: Cho tam giác ABC vuông tại A ,đường cao AH
a) Cho biết HB=9cm,HC=16cm.Tính các độ dài AH,AB=AC
b) Chứng minh các hệ thức AH2=HB.HC,AB2=BC.BH
Câu 2: Tam giác ABC vuông tại A, đường cao AH, HB=4cm,HC=9cm.Gọi M là trung điểm của BC. Tính các cạnh của tam giác AHM .
Câu3: Cho tam giác ABC vuông tại A . Hình vuông MNPQ có M thuộc cạnh AB,N thuộc cạnh AC ,P và Q thuộc cạnh BC . Biết BQ=4cm,CP=9cm. Tính cạnh của hình vuông.
Câu 4: Tam giác ABC đường cao AH (H thuộc cạnh BC) có AH=6cm,BH=4cm,HC=9cm. Chứng minh rằng:
a) Tam giác AHB đồng dạng với tam giác CHA .
b) BAC = 90o
Câu 5: Cho tam giác ABC, các đường cao BD và CE. Chứng minh rằng : AE.AB=AD.AC
Câu 6: Cho hình thang ABCD (AB//CD) , M là trung điểm của AD,H là hình chiếu của M ten BC. Chứng minh rằng:Diện tích hình thang bằng tích BC.MH bằng cách vẽ đường cao BK, gọi N là trung điểm của BC và tìm các tam giác đồng dạng
Câu 7: Cho tam giác nhọn ABC , các đường cao BD và CE cắt nhau ở H . Gọi K là hình chiếu của H trên BC . Chứng minh rằng :
a) BH.BD=BK.BC
b) CH.CE=CK.CB
c) BH.BD+CH.CE=BC2
Câu 8: Cho hình bình hành ABCD (A<B) . Gọi E là hình chiếu của C trên AB, K là hình chiếu của C trên AD, H là hình chiếu của B trên AC. Chứng minh rằng :
a) AB.AE=AC.HC
b) BC. AK=AC.HC
c) AB.AE+AD.AK=AC2
Bạn tự vẽ hình nha
a , Có BH vuông góc với MC nen tam giác BHC vuông tại H suy ra góc BHC = 90 độ suy ra góc HCB + góc HBC = 90 độ
Có góc ABC = 90 độ ( hình vuông ABCD ) . Có góc MBH + góc HBC = góc ABC = 90 độ
Suy ra góc MBH = góc BCH ( cùng phụ với góc HBC )
Xét tam giác MHB và tam giác BHC có :
Góc MHB = Góc BHC ( = 90 độ )
Góc MBH = góc BCH ( c.m.t)
Suy ra tam giác MHB đồng dạng với tam giác BHC ( g.g )
Suy ra BH/HC= HM / HB hay BH/HM = HC/ BH
Suy ra BH^2 = HM . HC
Mink chứng minh tiêp câu b nha
Có BH ^2 = HM . HC
BH ^2 = 4 .9
BH ^2 = 36
BH = 6 cm
Có tam giác BHM vuông tại M
MH2 + HB2 = MB 2 ( định lý py ta go )
4^2 + 6^2 = MB^2
16 + 36 = MB ^2
MB^2 = 52
MB = Căn 52
mà MB = BN
suy ra BN = Căn 52