K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2017

Bạn tự vẽ hình nha 

a , Có BH vuông góc với MC nen tam giác BHC vuông tại H suy ra góc BHC = 90 độ suy ra góc HCB + góc HBC = 90 độ 

Có góc ABC = 90 độ ( hình vuông ABCD ) . Có góc MBH + góc HBC = góc ABC = 90 độ 

Suy ra góc MBH = góc BCH ( cùng phụ với góc HBC ) 

Xét tam giác MHB và tam giác BHC có :

Góc MHB = Góc BHC ( = 90 độ )

Góc MBH = góc BCH ( c.m.t)

Suy ra tam giác MHB đồng dạng với tam giác BHC ( g.g )

Suy ra BH/HC= HM / HB hay BH/HM = HC/ BH 

Suy ra BH^2 = HM . HC

11 tháng 3 2017

Mink chứng minh tiêp câu b nha

Có BH ^2 = HM . HC

BH ^2 = 4 .9 

BH ^2 = 36 

BH = 6 cm 

Có tam giác BHM vuông tại M

MH+ HB= MB ( định lý py ta go )

4^2 + 6^2 = MB^2

16 + 36 = MB ^2

MB^2 = 52

MB = Căn 52

mà MB = BN 

suy ra BN = Căn 52

Câu 1: Cho tam giác ABC vuông tại A ,đường cao AH a) Cho biết HB=9cm,HC=16cm.Tính các độ dài AH,AB=AC b) Chứng minh các hệ thức AH2=HB.HC,AB2=BC.BH Câu 2: Tam giác ABC vuông tại A, đường cao AH, HB=4cm,HC=9cm.Gọi M là trung điểm của BC. Tính các cạnh của tam giác AHM .Câu3: Cho tam giác ABC vuông tại A . Hình vuông MNPQ có M thuộc cạnh AB,N thuộc cạnh AC ,P và Q thuộc cạnh BC . Biết BQ=4cm,CP=9cm. Tính cạnh của hình...
Đọc tiếp

Câu 1: Cho tam giác ABC vuông tại A ,đường cao AH 

a) Cho biết HB=9cm,HC=16cm.Tính các độ dài AH,AB=AC 

b) Chứng minh các hệ thức AH2=HB.HC,AB2=BC.BH 

Câu 2: Tam giác ABC vuông tại A, đường cao AH, HB=4cm,HC=9cm.Gọi M là trung điểm của BC. Tính các cạnh của tam giác AHM .

Câu3: Cho tam giác ABC vuông tại A . Hình vuông MNPQ có M thuộc cạnh AB,N thuộc cạnh AC ,P và Q thuộc cạnh BC . Biết BQ=4cm,CP=9cm. Tính cạnh của hình vuông. 

Câu 4: Tam giác ABC đường cao AH (H thuộc cạnh BC) có AH=6cm,BH=4cm,HC=9cm. Chứng minh rằng: 

a) Tam giác AHB đồng dạng với tam giác CHA .

b) BAC = 90o 

Câu 5: Cho tam giác ABC, các đường cao BD và CE. Chứng minh rằng : AE.AB=AD.AC 

Câu 6: Cho hình thang ABCD (AB//CD) , M là trung điểm của AD,H là hình chiếu của M ten BC. Chứng minh rằng:Diện tích hình thang bằng tích BC.MH bằng cách vẽ đường cao BK, gọi N là trung điểm của BC và tìm các tam giác đồng dạng 

Câu 7: Cho tam giác nhọn ABC , các đường cao BD và CE cắt nhau ở H . Gọi K là hình chiếu của H trên BC . Chứng minh rằng : 

a) BH.BD=BK.BC

b) CH.CE=CK.CB

c) BH.BD+CH.CE=BC2 

Câu 8: Cho hình bình hành ABCD (A<B) . Gọi E là hình chiếu của C trên AB, K là hình chiếu của C trên AD, H là hình chiếu của B trên AC. Chứng minh rằng : 

a) AB.AE=AC.HC

b) BC. AK=AC.HC

c) AB.AE+AD.AK=AC2 

3
13 tháng 7 2015

sao nhiều quá vậy cậu dăng như này nhìn đã thấy ngán rồi chẳng ai làm đâu

19 tháng 6 2016

nhieu

Sửa đề: M là hình chiếu của D trên BC

a: Xét ΔCMD vuông tại M và ΔCAB vuông tại A có

góc C chung

=>ΔCMD đồng dạng với ΔCAB

=>CM/CA=CD/CB

=>CM*CB=CA*CD

c: góc DMB+góc DAB=180 độ

=>DMBA nội tiếp

=>góc CBD=góc CAM

 

a: BC^2=AB^2+AC^2

=>ΔABC vuông tại A

Xét ΔNBM và ΔABC có

BN/BA=BM/BC

góc B chung

=>ΔNBM đồng dạng với ΔABC

b: ΔNBM đồng dạng với ΔABC

=>NM/AC=BM/BC

=>NM/4=2,5/5=1/2

=>NM=2cm

a: Xét ΔAND và ΔABM có

góc A chung

AN=DM

AB=AD

=>ΔAND=ΔABM

=>AN=AM

góc NAD=góc BAM

=>góc NAD+góc DAM=góc DAM+góc BAM=90 độ

=>góc NAM=90 độ

=>ΔNAM vuông cân tại A

b: Xét ΔABM và ΔPDA có

góc B=góc D

góc BAM=góc APD

=>ΔABM đồng dạng với ΔPDA

=>AB/BM=PD/AD

=>AB*AD=BM*PD=BC^2
c: Xét ΔAIH và ΔAQD có

góc A chung

góc H=góc D

=>ΔAIH đồng dạng với ΔAQD

=>AI*AD=AH*AQ

22 tháng 4 2022

loading...

loading...